Floquet engineering of topological states in realistic quantum materials via light-matter interactions

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Progress in Surface Science Pub Date : 2023-05-01 DOI:10.1016/j.progsurf.2023.100705
Hang Liu , Haijun Cao , Sheng Meng
{"title":"Floquet engineering of topological states in realistic quantum materials via light-matter interactions","authors":"Hang Liu ,&nbsp;Haijun Cao ,&nbsp;Sheng Meng","doi":"10.1016/j.progsurf.2023.100705","DOIUrl":null,"url":null,"abstract":"<div><p><span>Electronic states in quantum materials can be engineered by light irradiation<span><span>, which is greatly advanced by ab-initio computational predictions in realistic light-matter coupled systems. Here we review the most recent progresses from first principles<span><span> computation in the light-driven Floquet steady states and transient dynamical states with topological electronic bands in real crystals. We first introduce the first-principles modeling approach, dubbed time-dependent Wannier scheme, for simulating real quantum materials under light irradiation. Then, we present a few examples of theoretically-predicted Floquet-Bloch electronic bands engineered by time-periodic light fields, which include the three types of Floquet-Dirac fermions in graphene and </span>black phosphorus<span>, the Floquet-Chern flat bands with an unprecedented high flatness ratio of band width over band gap in a Kagome material, and the Floquet conversion between bright and dark valley </span></span></span>excitons<span> in monolayer transition-metal dichalcogenides. Next, we show the ultrafast dynamical evolution of Weyl nodal points in orthorhombic WTe</span></span></span><sub>2</sub> driven by a time-aperiodic short light pulse, and discuss the connection between the Floquet and transient states engineered by light. After that, we introduce three prominent experiments, inspired by theoretical predictions, on the light-induced topological Floquet electronic bands in quantum crystalline materials. Finally, we make a brief summary and perspective on the engineering of topological electronic states through light-matter interactions.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"98 2","pages":"Article 100705"},"PeriodicalIF":8.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681623000096","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Electronic states in quantum materials can be engineered by light irradiation, which is greatly advanced by ab-initio computational predictions in realistic light-matter coupled systems. Here we review the most recent progresses from first principles computation in the light-driven Floquet steady states and transient dynamical states with topological electronic bands in real crystals. We first introduce the first-principles modeling approach, dubbed time-dependent Wannier scheme, for simulating real quantum materials under light irradiation. Then, we present a few examples of theoretically-predicted Floquet-Bloch electronic bands engineered by time-periodic light fields, which include the three types of Floquet-Dirac fermions in graphene and black phosphorus, the Floquet-Chern flat bands with an unprecedented high flatness ratio of band width over band gap in a Kagome material, and the Floquet conversion between bright and dark valley excitons in monolayer transition-metal dichalcogenides. Next, we show the ultrafast dynamical evolution of Weyl nodal points in orthorhombic WTe2 driven by a time-aperiodic short light pulse, and discuss the connection between the Floquet and transient states engineered by light. After that, we introduce three prominent experiments, inspired by theoretical predictions, on the light-induced topological Floquet electronic bands in quantum crystalline materials. Finally, we make a brief summary and perspective on the engineering of topological electronic states through light-matter interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光-物质相互作用的现实量子材料拓扑态的Floquet工程
量子材料中的电子态可以通过光照射来设计,这在现实光-物质耦合系统的从头算预测中得到了很大的进步。本文综述了实际晶体中具有拓扑电子带的光驱动Floquet稳态和瞬态的第一原理计算的最新进展。我们首先介绍了第一原理建模方法,称为时间相关的万尼尔方案,用于模拟光照射下的真实量子材料。然后,我们给出了几个由时间周期光场设计的理论预测的Floquet- bloch电子带的例子,包括石墨烯和黑磷中的三种Floquet- dirac费米子,Kagome材料中具有前所未有的高带宽度与带隙平坦比的Floquet- chern平面带,以及单层过渡金属二硫族化合物中亮谷和暗谷激子之间的Floquet转换。接下来,我们展示了在时间-非周期短光脉冲驱动下正交WTe2中Weyl节点的超快动态演化,并讨论了Floquet与光工程瞬态之间的联系。在此之后,我们介绍了三个受理论预测启发的关于量子晶体材料中光致拓扑Floquet电子带的重要实验。最后,对光-物质相互作用的拓扑电子态工程进行了简要的总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
期刊最新文献
Editorial Board Current perspective towards a general framework to describe and harness friction at the nanoscale Time-resolved photoemission electron microscopy of semiconductor interfaces Editorial Board Structural dynamics in atomic indium wires on silicon: From ultrafast probing to coherent vibrational control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1