{"title":"Chiral spin symmetry and hot/dense QCD","authors":"L.Ya. Glozman","doi":"10.1016/j.ppnp.2023.104049","DOIUrl":null,"url":null,"abstract":"<div><p>Above the chiral symmetry restoration crossover around <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub><mspace></mspace><mo>∼</mo><mspace></mspace><mn>155</mn></mrow></math></span> MeV a new regime arises in QCD, a stringy fluid, which is characterized by an approximate chiral spin symmetry of the thermal partition function. This symmetry is not a symmetry of the Dirac Lagrangian and is a symmetry of the electric part of the QCD Lagrangian. In this regime the medium consists of the chirally symmetric and approximately chiral spin symmetric hadrons that are made of the chirally symmetric quarks connected into the color singlet compounds by a confining chromoelectric field. This regime is evidenced by the approximate chiral spin symmetry of the spatial and temporal correlators and by the breakdown of the thermal perturbation theory at the crossover between the partonic (the quark–gluon plasma) and the stringy fluid regimes at <span><math><mrow><mo>∼</mo><mn>3</mn><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></mrow></math></span>. The chiral spin symmetry smoothly disappears above <span><math><mrow><mo>∼</mo><mn>3</mn><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></mrow></math></span> which means that the chromoelectric confining interaction gets screened. A direct evidence that the stringy fluid medium consists of densely packed hadrons is the pion spectral function that shows a distinct pion state and its first radial excitation above <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></math></span>. Another direct evidence of the hadron degrees of freedom in the stringy fluid is the bottomonium spectrum with the 1S, 2S, 3S and 1P, 2P radial and orbital excitations that become broad with temperature. The hadrons between <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></math></span> and <span><math><mrow><mo>∼</mo><mn>3</mn><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></mrow></math></span> in the stringy fluid interact strongly which makes the stringy fluid more a liquid rather than a gas. We discuss how this chiral spin symmetric regime extends into the finite chemical potentials domain and present a qualitative sketch of the QCD phase diagram.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104049"},"PeriodicalIF":14.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641023000303","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 3
Abstract
Above the chiral symmetry restoration crossover around MeV a new regime arises in QCD, a stringy fluid, which is characterized by an approximate chiral spin symmetry of the thermal partition function. This symmetry is not a symmetry of the Dirac Lagrangian and is a symmetry of the electric part of the QCD Lagrangian. In this regime the medium consists of the chirally symmetric and approximately chiral spin symmetric hadrons that are made of the chirally symmetric quarks connected into the color singlet compounds by a confining chromoelectric field. This regime is evidenced by the approximate chiral spin symmetry of the spatial and temporal correlators and by the breakdown of the thermal perturbation theory at the crossover between the partonic (the quark–gluon plasma) and the stringy fluid regimes at . The chiral spin symmetry smoothly disappears above which means that the chromoelectric confining interaction gets screened. A direct evidence that the stringy fluid medium consists of densely packed hadrons is the pion spectral function that shows a distinct pion state and its first radial excitation above . Another direct evidence of the hadron degrees of freedom in the stringy fluid is the bottomonium spectrum with the 1S, 2S, 3S and 1P, 2P radial and orbital excitations that become broad with temperature. The hadrons between and in the stringy fluid interact strongly which makes the stringy fluid more a liquid rather than a gas. We discuss how this chiral spin symmetric regime extends into the finite chemical potentials domain and present a qualitative sketch of the QCD phase diagram.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.