{"title":"Neural control of white, beige and brown adipocytes.","authors":"T J Bartness, V Ryu","doi":"10.1038/ijosup.2015.9","DOIUrl":null,"url":null,"abstract":"<p><p>Reports of brown-like adipocytes in traditionally white adipose tissue (WAT) depots occurred ~30 years ago, but interest in white adipocyte 'browning' only has gained attention more recently. We integrate some of what is known about the sympathetic nervous system (SNS) innervation of WAT and brown adipose tissue (BAT) with the few studies focusing on the sympathetic innervation of the so-called 'brite' or 'beige' adipocytes that appear when WAT sympathetic drive increases (for example, cold exposure and food deprivation). Only one brain site, the dorsomedial hypothalamic nucleus (DMH), selectively browns some (inguinal WAT (IWAT) and dorsomedial subcutaneous WAT), but not all WAT depots and only when DMH neuropeptide Y gene expression is knocked down, a browning effect is mediated by WAT SNS innervation. Other studies show that WAT sympathetic fiber density is correlated with the number of brown-like adipocytes (multilocular lipid droplets, uncoupling protein-1 immunoreactivity) at both warm and cold ambient temperatures. WAT and BAT have sensory innervation, the latter important for acute BAT cold-induced temperature increases, therefore suggesting the possible importance of sensory neural feedback from brite/beige cells for heat production. Only one report shows browned WAT capable of producing heat in vivo. Collectively, increases in WAT sympathetic drive and the phenotype of these stimulated adipocytes seems critical for the production of new and/or transdifferentiation of white to brite/beige adipocytes. Selective harnessing of WAT SNS drive to produce browning or selective browning independent of the SNS to counter increases in adiposity by increasing expenditure appears to be extremely challenging. </p>","PeriodicalId":14202,"journal":{"name":"International journal of obesity supplements","volume":"5 Suppl 1","pages":"S35-9"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/ijosup.2015.9","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of obesity supplements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/ijosup.2015.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64
Abstract
Reports of brown-like adipocytes in traditionally white adipose tissue (WAT) depots occurred ~30 years ago, but interest in white adipocyte 'browning' only has gained attention more recently. We integrate some of what is known about the sympathetic nervous system (SNS) innervation of WAT and brown adipose tissue (BAT) with the few studies focusing on the sympathetic innervation of the so-called 'brite' or 'beige' adipocytes that appear when WAT sympathetic drive increases (for example, cold exposure and food deprivation). Only one brain site, the dorsomedial hypothalamic nucleus (DMH), selectively browns some (inguinal WAT (IWAT) and dorsomedial subcutaneous WAT), but not all WAT depots and only when DMH neuropeptide Y gene expression is knocked down, a browning effect is mediated by WAT SNS innervation. Other studies show that WAT sympathetic fiber density is correlated with the number of brown-like adipocytes (multilocular lipid droplets, uncoupling protein-1 immunoreactivity) at both warm and cold ambient temperatures. WAT and BAT have sensory innervation, the latter important for acute BAT cold-induced temperature increases, therefore suggesting the possible importance of sensory neural feedback from brite/beige cells for heat production. Only one report shows browned WAT capable of producing heat in vivo. Collectively, increases in WAT sympathetic drive and the phenotype of these stimulated adipocytes seems critical for the production of new and/or transdifferentiation of white to brite/beige adipocytes. Selective harnessing of WAT SNS drive to produce browning or selective browning independent of the SNS to counter increases in adiposity by increasing expenditure appears to be extremely challenging.