Protoporphyrin IX-loaded albumin nanoparticles reverse cancer chemoresistance by enhancing intracellular reactive oxygen species

IF 4.7 4区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Nanomedicine: Nanotechnology, Biology and Medicine Pub Date : 2023-07-01 DOI:10.1016/j.nano.2023.102688
Xiaolin Xu PhD , Chenglong Wang PhD , Wencai Guan BSc , Fanchen Wang MSc , Xin Li MSc , Jia Yuan BSc , Guoxiong Xu MD, PhD
{"title":"Protoporphyrin IX-loaded albumin nanoparticles reverse cancer chemoresistance by enhancing intracellular reactive oxygen species","authors":"Xiaolin Xu PhD ,&nbsp;Chenglong Wang PhD ,&nbsp;Wencai Guan BSc ,&nbsp;Fanchen Wang MSc ,&nbsp;Xin Li MSc ,&nbsp;Jia Yuan BSc ,&nbsp;Guoxiong Xu MD, PhD","doi":"10.1016/j.nano.2023.102688","DOIUrl":null,"url":null,"abstract":"<div><p><span>Chemoresistance is the main cause of chemotherapy failure in ovarian cancer<span><span> (OC). The enhanced scavenging of reactive oxygen species (ROS) by the </span>thioredoxin<span><span><span><span> system resulted in insufficient intracellular concentrations of effective ROS, leading to chemoresistance. To induce OC cell apoptosis by enhancing intracellular ROS levels, </span>protoporphyrin IX (PpIX) and albumin-bound PTX </span>nanoparticles (APNP) were utilized to fabricate APNP-PpIX nanoparticles. APNP-PpIX effectively generated ROS and increased the effective ROS concentration in chemoresistant </span>cancer cells. The </span></span></span><em>in vitro</em> and <em>in vivo</em><span><span> experiments confirmed the effective inhibition of APNP-PpIX on chemoresistant OC cell proliferation and tumor formation. APNP-PpIX significantly improved the effectiveness of chemotherapy and </span>photodynamic<span> therapy, thus providing a new approach for the clinical treatment of chemoresistant OC.</span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000394","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Chemoresistance is the main cause of chemotherapy failure in ovarian cancer (OC). The enhanced scavenging of reactive oxygen species (ROS) by the thioredoxin system resulted in insufficient intracellular concentrations of effective ROS, leading to chemoresistance. To induce OC cell apoptosis by enhancing intracellular ROS levels, protoporphyrin IX (PpIX) and albumin-bound PTX nanoparticles (APNP) were utilized to fabricate APNP-PpIX nanoparticles. APNP-PpIX effectively generated ROS and increased the effective ROS concentration in chemoresistant cancer cells. The in vitro and in vivo experiments confirmed the effective inhibition of APNP-PpIX on chemoresistant OC cell proliferation and tumor formation. APNP-PpIX significantly improved the effectiveness of chemotherapy and photodynamic therapy, thus providing a new approach for the clinical treatment of chemoresistant OC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原卟啉ix负载白蛋白纳米颗粒通过增强细胞内活性氧逆转癌症化疗耐药
化疗耐药是卵巢癌化疗失败的主要原因。硫氧还蛋白系统对活性氧(ROS)的清除能力增强,导致细胞内有效ROS浓度不足,从而导致化学耐药。为了通过提高细胞内ROS水平诱导OC细胞凋亡,利用原卟啉IX (PpIX)和白蛋白结合的PTX纳米颗粒(APNP)制备了APNP-PpIX纳米颗粒。APNP-PpIX在化疗耐药癌细胞中有效生成ROS,并增加ROS的有效浓度。体外和体内实验证实了APNP-PpIX对化疗耐药OC细胞增殖和肿瘤形成的有效抑制。APNP-PpIX显著提高了化疗和光动力治疗的有效性,为化疗耐药OC的临床治疗提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
3.60%
发文量
104
审稿时长
4.6 months
期刊介绍: Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
Selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme protects against 6-OHDA-induced neurotoxicity in PC12 cells and rat model of Parkinson's disease Insights on the molecular mechanisms of cytotoxicity induced by AS1411 linked to folate-functionalized DNA nanocages in cancer cells Efficacy comparisons of solvent-based paclitaxel, liposomal paclitaxel, nanoparticle albumin-bound paclitaxel, and docetaxel after neoadjuvant systemic treatment in breast cancer Microfluidic-derived docosahexaenoic acid liposomes for glioblastoma therapy Rolipram-loaded PgP nanoparticle reduces secondary injury and enhances motor function recovery in a rat moderate contusion SCI model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1