Ultrasound-guided chemoradiotherapy of breast cancer using smart methotrexate-loaded perfluorohexane nanodroplets

IF 4.7 4区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Nanomedicine: Nanotechnology, Biology and Medicine Pub Date : 2023-02-01 DOI:10.1016/j.nano.2022.102643
Roghayeh Kamran Samani PhD , Fatemeh Maghsoudinia PhD , Fatemeh Mehradnia PhD , Seyed Hossein Hejazi PhD , Mohsen Saeb PhD , Tayebe Sobhani MSc , Zohreh Farahbakhsh MSc , Masoud A. Mehrgardi PhD , Mohamad Bagher Tavakoli PhD
{"title":"Ultrasound-guided chemoradiotherapy of breast cancer using smart methotrexate-loaded perfluorohexane nanodroplets","authors":"Roghayeh Kamran Samani PhD ,&nbsp;Fatemeh Maghsoudinia PhD ,&nbsp;Fatemeh Mehradnia PhD ,&nbsp;Seyed Hossein Hejazi PhD ,&nbsp;Mohsen Saeb PhD ,&nbsp;Tayebe Sobhani MSc ,&nbsp;Zohreh Farahbakhsh MSc ,&nbsp;Masoud A. Mehrgardi PhD ,&nbsp;Mohamad Bagher Tavakoli PhD","doi":"10.1016/j.nano.2022.102643","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Chemoradiotherapy with controlled-release </span>nanocarriers<span><span> such as sono-sensitive nanodroplets (NDs) can enhance the anticancer activity of chemotherapy medicines and reduces normal tissue side effects. In this study, folic acid-functionalized methotrexate-loaded </span>perfluorohexane<span> NDs with alginate shell (FA-MTX/PFH@alginate NDs) were synthesized, characterized, and their potential for ultrasound-guided chemoradiotherapy of breast cancer was investigated </span></span></span><em>in vitro</em> and <em>in vivo</em><span><span>. The cancer cell (4T1) viabilities and surviving fractions after NDs and ultrasound </span>treatments were significantly decreased. However, this reduction was much more significant for ultrasound in combination with X-ray irradiation. The </span><em>in vitro</em> and <em>in vivo</em><span><span> results confirmed that MTX-loaded NDs are highly biocompatible and they have no significant hemolytic activity and </span>organ toxicity. Furthermore, the </span><em>in vivo</em><span> results indicated that the FA-MTX/PFH@alginate NDs were accumulated selectively in the tumor region. In conclusion, FA-functionalized MTX/PFH@alginate NDs have a great theranostic performance for ultrasound-controlled drug delivery in combination with radiotherapy of breast cancer.</span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"48 ","pages":"Article 102643"},"PeriodicalIF":4.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422001290","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemoradiotherapy with controlled-release nanocarriers such as sono-sensitive nanodroplets (NDs) can enhance the anticancer activity of chemotherapy medicines and reduces normal tissue side effects. In this study, folic acid-functionalized methotrexate-loaded perfluorohexane NDs with alginate shell (FA-MTX/PFH@alginate NDs) were synthesized, characterized, and their potential for ultrasound-guided chemoradiotherapy of breast cancer was investigated in vitro and in vivo. The cancer cell (4T1) viabilities and surviving fractions after NDs and ultrasound treatments were significantly decreased. However, this reduction was much more significant for ultrasound in combination with X-ray irradiation. The in vitro and in vivo results confirmed that MTX-loaded NDs are highly biocompatible and they have no significant hemolytic activity and organ toxicity. Furthermore, the in vivo results indicated that the FA-MTX/PFH@alginate NDs were accumulated selectively in the tumor region. In conclusion, FA-functionalized MTX/PFH@alginate NDs have a great theranostic performance for ultrasound-controlled drug delivery in combination with radiotherapy of breast cancer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用装载智能甲氨蝶呤的全氟己烷纳米液滴的超声引导乳腺癌放化疗
利用声敏纳米液滴(NDs)等可控释放纳米载体进行放化疗,可以增强化疗药物的抗癌活性,减少正常组织的副作用。本研究合成了叶酸功能化的海藻酸壳甲氨蝶呤负载全氟己烷NDs (FA-MTX/PFH@alginate NDs),并对其进行了表征,并在体外和体内研究了其在超声引导乳腺癌放化疗中的潜力。NDs和超声治疗后肿瘤细胞(4T1)存活率和存活分数显著降低。然而,当超声与x射线联合照射时,这种减少更为显著。体外和体内实验结果证实,含mtx的NDs具有高度的生物相容性,没有明显的溶血活性和器官毒性。此外,体内结果表明FA-MTX/PFH@alginate NDs在肿瘤区域选择性积累。综上所述,fa功能化的MTX/PFH@alginate NDs在乳腺癌的超声控制给药联合放疗中具有良好的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
3.60%
发文量
104
审稿时长
4.6 months
期刊介绍: Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays Fabrication of blended nanofibrous cardiac patch transplanted with TGF-β3 and human umbilical cord MSCs-derived exosomes for potential cardiac regeneration after acute myocardial infarction Delivery of gene editing therapeutics Liposomes - Human phagocytes interplay in whole blood: effect of liposome design Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1