The genomic physics of tumor–microenvironment crosstalk

IF 23.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physics Reports Pub Date : 2023-07-27 DOI:10.1016/j.physrep.2023.07.006
Mengmeng Sang , Li Feng , Ph.D. , Ang Dong , Claudia Gragnoli , Christopher Griffin , Rongling Wu , Ph.D.
{"title":"The genomic physics of tumor–microenvironment crosstalk","authors":"Mengmeng Sang ,&nbsp;Li Feng , Ph.D. ,&nbsp;Ang Dong ,&nbsp;Claudia Gragnoli ,&nbsp;Christopher Griffin ,&nbsp;Rongling Wu , Ph.D.","doi":"10.1016/j.physrep.2023.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>The recent years have witnessed the explosive application of sequencing technologies to study tumor–microenvironment interactions and their role in shaping intratumoral heterogeneity, neoplastic progression and tumor resistance to anticancer drugs. Statistical modeling is an essential tool to decipher the function of cellular interactions from massive amounts of transcriptomic data. However, most available approaches can only capture the existence of cell interconnections, failing to reveal how cells communicate with each other in (bi)directional, signed, and weighted manners. Widely used ligand–receptor signaling analysis can discern pairwise or dyadic cell–cell interactions, but it has little power to characterize the rock–paper–scissors cycle of interdependence among a large number of interacting cells. Here, we introduce an emerging statistical physics<span> theory, derived from the interdisciplinary cross-pollination of ecosystem theory, allometric scaling law, evolutionary game theory, predator–prey theory, and graph theory. This new theory, coined quasi-dynamic game-graph theory (qdGGT), is formulated as generalized Lotka–Volterra predator–prey equations, allowing cell–cell crosstalk networks across any level of organizational space to be inferred from any type of genomic data with any dimension. qdGGT can visualize and interrogate how genes reciprocally telegraph signals among cells from different biogeographical locations and how this process orchestrates tumor processes. We demonstrate the application of qdGGT to identify genes that drive intercellular cooperation or competition and chart mechanistic cell–cell interaction networks that mediate the tumor–microenvironment crosstalk.</span></p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1029 ","pages":"Pages 1-51"},"PeriodicalIF":23.9000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157323002089","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent years have witnessed the explosive application of sequencing technologies to study tumor–microenvironment interactions and their role in shaping intratumoral heterogeneity, neoplastic progression and tumor resistance to anticancer drugs. Statistical modeling is an essential tool to decipher the function of cellular interactions from massive amounts of transcriptomic data. However, most available approaches can only capture the existence of cell interconnections, failing to reveal how cells communicate with each other in (bi)directional, signed, and weighted manners. Widely used ligand–receptor signaling analysis can discern pairwise or dyadic cell–cell interactions, but it has little power to characterize the rock–paper–scissors cycle of interdependence among a large number of interacting cells. Here, we introduce an emerging statistical physics theory, derived from the interdisciplinary cross-pollination of ecosystem theory, allometric scaling law, evolutionary game theory, predator–prey theory, and graph theory. This new theory, coined quasi-dynamic game-graph theory (qdGGT), is formulated as generalized Lotka–Volterra predator–prey equations, allowing cell–cell crosstalk networks across any level of organizational space to be inferred from any type of genomic data with any dimension. qdGGT can visualize and interrogate how genes reciprocally telegraph signals among cells from different biogeographical locations and how this process orchestrates tumor processes. We demonstrate the application of qdGGT to identify genes that drive intercellular cooperation or competition and chart mechanistic cell–cell interaction networks that mediate the tumor–microenvironment crosstalk.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肿瘤-微环境串扰的基因组物理学
近年来,测序技术在研究肿瘤-微环境相互作用及其在形成肿瘤内异质性、肿瘤进展和肿瘤对抗癌药物耐药性中的作用方面得到了爆炸式的应用。统计建模是从大量转录组学数据中破译细胞相互作用功能的重要工具。然而,大多数可用的方法只能捕获细胞互连的存在,而不能揭示细胞如何以双向、签名和加权的方式相互通信。广泛使用的配体-受体信号分析可以识别成对或二元细胞-细胞相互作用,但它几乎没有能力表征大量相互作用细胞之间相互依赖的石头-剪子布循环。在这里,我们介绍了一种新兴的统计物理理论,它源于生态系统理论、异速缩放定律、进化博弈论、捕食者-猎物理论和图论的跨学科交叉授粉。这个新理论,被称为准动态博弈图理论(qdGGT),被表述为广义的Lotka-Volterra捕食者-猎物方程,允许从任何维度的任何类型的基因组数据中推断出跨越任何组织空间水平的细胞-细胞串扰网络。qdGGT可以可视化和询问基因如何在不同生物地理位置的细胞之间相互传递信号,以及这个过程如何协调肿瘤过程。我们展示了qdGGT的应用,以识别驱动细胞间合作或竞争的基因,并绘制介导肿瘤-微环境串扰的机制细胞-细胞相互作用网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Reports
Physics Reports 物理-物理:综合
CiteScore
56.10
自引率
0.70%
发文量
102
审稿时长
9.1 weeks
期刊介绍: Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.
期刊最新文献
Interacting topological quantum aspects with light and geometrical functions Editorial Board Ultrafast demagnetization in ferromagnetic materials: Origins and progress Large fluctuations and primordial black holes Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1