{"title":"Accuracy of computer-assisted implant placement with insertion templates.","authors":"Eleni Naziri, Alexander Schramm, Frank Wilde","doi":"10.3205/iprs000094","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The purpose of this study was to assess the accuracy of computer-assisted implant insertion based on computed tomography and template-guided implant placement.</p><p><strong>Material and methods: </strong>A total of 246 implants were placed with the aid of 3D-based transfer templates in 181 consecutive partially edentulous patients. Five groups were formed on the basis of different implant systems, surgical protocols and guide sleeves. After virtual implant planning with the CoDiagnostiX Software, surgical guides were fabricated in a dental laboratory. After implant insertion, the actual implant position was registered intraoperatively and transferred to a model cast. Deviations between the preoperative plan and postoperative implant position were measured in a follow-up computed tomography of the patient's model casts and image fusion with the preoperative computed tomography.</p><p><strong>Results: </strong>The median deviation between preoperative plan and postoperative implant position was 1.0 mm at the implant shoulder and 1.4 mm at the implant apex. The median angular deviation was 3.6º. There were significantly smaller angular deviations (P=0.000) and significantly lower deviations at the apex (P=0.008) in implants placed for a single-tooth restoration than in those placed at a free-end dental arch. The location of the implant, whether in the upper or lower jaw, did not significantly affect deviations. Increasing implant length had a significant negative influence on deviations from the planned implant position. There was only one significant difference between two out of the five implant systems used.</p><p><strong>Conclusion: </strong>The data of this clinical study demonstrate the accuracy and predictable implant placement when using laboratory-fabricated surgical guides based on computed tomography.</p>","PeriodicalId":43347,"journal":{"name":"GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3205/iprs000094","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3205/iprs000094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 59
Abstract
Objectives: The purpose of this study was to assess the accuracy of computer-assisted implant insertion based on computed tomography and template-guided implant placement.
Material and methods: A total of 246 implants were placed with the aid of 3D-based transfer templates in 181 consecutive partially edentulous patients. Five groups were formed on the basis of different implant systems, surgical protocols and guide sleeves. After virtual implant planning with the CoDiagnostiX Software, surgical guides were fabricated in a dental laboratory. After implant insertion, the actual implant position was registered intraoperatively and transferred to a model cast. Deviations between the preoperative plan and postoperative implant position were measured in a follow-up computed tomography of the patient's model casts and image fusion with the preoperative computed tomography.
Results: The median deviation between preoperative plan and postoperative implant position was 1.0 mm at the implant shoulder and 1.4 mm at the implant apex. The median angular deviation was 3.6º. There were significantly smaller angular deviations (P=0.000) and significantly lower deviations at the apex (P=0.008) in implants placed for a single-tooth restoration than in those placed at a free-end dental arch. The location of the implant, whether in the upper or lower jaw, did not significantly affect deviations. Increasing implant length had a significant negative influence on deviations from the planned implant position. There was only one significant difference between two out of the five implant systems used.
Conclusion: The data of this clinical study demonstrate the accuracy and predictable implant placement when using laboratory-fabricated surgical guides based on computed tomography.