Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease in focal cerebral ischemic rats.

American journal of neurodegenerative disease Pub Date : 2016-06-01 eCollection Date: 2016-01-01
Mak Adam Daulatzai
{"title":"Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease in focal cerebral ischemic rats.","authors":"Mak Adam Daulatzai","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach. </p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913220/pdf/ajnd0005-0102.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of neurodegenerative disease","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泛发炎和氧化-亚硝基途径在局灶性脑缺血大鼠阿尔茨海默病神经发病机制中的基础性作用
阿尔茨海默病(AD)是一种慢性进行性脑神经变性疾病,也是最常见的痴呆症病因。文献中描述了几种阿尔茨海默病的神经生物学病因。这些病因包括血管性、感染性、毒性、营养性、代谢性和炎症性。然而,这些不同的病因有一个共同点,即炎症和氧化应激。脂多糖(LPS)会促进促炎细胞因子和趋化因子的合成;长期如此,它们会在外周和中枢神经系统中引发各种病理反应,包括记忆巩固功能障碍和记忆力衰退。衰老--注意力缺失症的主要风险因素,本质上与炎症有关。一些与年龄相关的合并症也与炎症和氧化应激有关。因此,在与衰老相关的潜在病理背景下,这些共同存在的加重因素会持续存在。它们可能会交汇在一起,协同传播可能会改变疾病的进程。稳态/修复和炎症因素之间存在着关键的平衡;长期、无休止的炎症环境会促进神经炎症和神经退行性病变的发生。大量证据表明,中枢神经系统炎症与神经退行性病变有关。LPS、促炎细胞因子、小胶质细胞分泌的多种介质以及氧化-亚硝基应激在引发神经炎症过程和神经退行性变方面共同发挥着关键作用。上述因素的持续失控会加剧认知能力的衰退,同时也会增加罹患注意力缺失症的风险。尽管在过去二十年中取得了重大进展,但预防和治疗注意力缺失症的方法一直令人难以捉摸。目前的研究有力地表明,改善/预防炎症的有害影响可能有利于预防老年痴呆症的发生,延缓衰老和老年痴呆症的认知功能障碍。围绕炎症-氧化-亚硝基应激范式的多焦点协同治疗努力可能对预防和治疗 AD 至关重要。本文介绍了这种相关的多药治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exceptionally giant neglected sacral chordoma in a post-poliotic residual paralysis patient - a rare case scenario. Evaluation of willingness to obtain of Covid 19 vaccine in patients with multiple sclerosis. Short segment posterior fixation of unstable thoracolumbar vertebral fractures with fractured vertebra augmentation with intermediate pedicle screw - a clinicoradiological analysis. Single-cell RNA sequencing analysis and Alzheimer's disease: a bibliometric analysis. Leveraging genetic diversity to understand monogenic Parkinson's disease's landscape in AfrAbia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1