Na Liu;Ziheng Chen;Da Luo;Qiuhong Zhao;Tao Yue;Yuanyuan Liu;Xiaomao Li;Chen Yang;Haowen Jiang;Wen J. Li
{"title":"Inflammation Endows Benign Prostatic Hyperplasia Cells With Similar Physical Properties to Prostate Cancer Cells","authors":"Na Liu;Ziheng Chen;Da Luo;Qiuhong Zhao;Tao Yue;Yuanyuan Liu;Xiaomao Li;Chen Yang;Haowen Jiang;Wen J. Li","doi":"10.1109/OJNANO.2021.3071720","DOIUrl":null,"url":null,"abstract":"Although inflammation is considered an important factor for promoting carcinogenesis, further evidence is still needed to draw definitive conclusions on its role in prostate cancer (PCa) development and progression. This study characterized the radius, specific membrane capacitance (SMC), and Youngs modulus of 20 patient-derived prostate cells, including 6 patients diagnosed with benign prostatic hyperplasia (BPH), 5 patients diagnosed with BPH accompanied with chronic inflammation (BCI), and 9 patients diagnosed with PCa. The characterized results show that the three groups of cells possess approximate radius value. Both BCI and PCa cells show larger SMC values than BPH cells. Only PCa cells possess lower Youngs modulus than BPH cells, the stiffness of which is approximate to that of BCI cells. Additionally, experiments have testified that inflammatory cytokine, (i.e. TNF-\n<inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>\n) can induce the increase of cellular SMC values. The finds demonstrate that inflammation is linked to cancer promotion process and accompanied with cellular biophysical changes, providing a new insight into the effects of inflammation in promoting PCa.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"2 ","pages":"52-58"},"PeriodicalIF":1.8000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/OJNANO.2021.3071720","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9399259/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although inflammation is considered an important factor for promoting carcinogenesis, further evidence is still needed to draw definitive conclusions on its role in prostate cancer (PCa) development and progression. This study characterized the radius, specific membrane capacitance (SMC), and Youngs modulus of 20 patient-derived prostate cells, including 6 patients diagnosed with benign prostatic hyperplasia (BPH), 5 patients diagnosed with BPH accompanied with chronic inflammation (BCI), and 9 patients diagnosed with PCa. The characterized results show that the three groups of cells possess approximate radius value. Both BCI and PCa cells show larger SMC values than BPH cells. Only PCa cells possess lower Youngs modulus than BPH cells, the stiffness of which is approximate to that of BCI cells. Additionally, experiments have testified that inflammatory cytokine, (i.e. TNF-
$\alpha$
) can induce the increase of cellular SMC values. The finds demonstrate that inflammation is linked to cancer promotion process and accompanied with cellular biophysical changes, providing a new insight into the effects of inflammation in promoting PCa.