Plasmon-Enhanced Photovoltaic Characteristics of Black Phosphorus-MoS2 Heterojunction

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY IEEE Open Journal of Nanotechnology Pub Date : 2021-02-26 DOI:10.1109/OJNANO.2021.3062495
Hou Chaojian;Li Bo;Li Qingwei;Yang Lijun;Wang Yang;Yang Zhan;Dong Lixin
{"title":"Plasmon-Enhanced Photovoltaic Characteristics of Black Phosphorus-MoS<sub>2</sub> Heterojunction","authors":"Hou Chaojian;Li Bo;Li Qingwei;Yang Lijun;Wang Yang;Yang Zhan;Dong Lixin","doi":"10.1109/OJNANO.2021.3062495","DOIUrl":null,"url":null,"abstract":"Van der Waals p-n heterojunctions, consist of atomically thin two-dimensional (2D) layer semiconductors, have opened a promising avenue for the realization of ultrathin and ultralight photovoltaic solar cells. This feature enables them particularly be suitable as the micro/nanoscale solar energy-conversion units integrated in wireless power supply micro/nano-systems. However, solar energy harvest in these heterojunctions is hindered by inherent weak interlayer interaction at such ultrathin thickness. Herein, a novel integrated strategy by embedding metallic plasmonic pentamers optical nano-antenna array (ONAA) onto overlap region of black phosphorus-molybdenum disulfide (BP-MoS\n<sub>2</sub>\n) p-n heterojunction is firstly exploited under both a near-infrared laser (λ = 830 nm) and standardized AM1.5G solar irradiation. Results show that profiting from plasmon-induced “hot” electrons and thermal field generating from gigantic near-field enhancement in 15 nm-ultrashort nanogap ONAAs and high intrinsic build-in field in atomically overlap region, this integrated configuration displays enhanced photovoltaic properties. Maximum short-circuits current (I\n<sub>sc</sub>\n = 0.53 μA) and open circuit voltage (V\n<sub>oc</sub>\n = 0.2 V) had been attained. Additional fill factor of 14% and double power conversion efficiencies amplification are measured via comparison of device without/with ONAAs. These findings strongly demonstrate this reliable enhancement strategy with integration of plasmonic physics into 2D heterojunctions for realizing energy harvesting unit in the wireless power supply micro/nano-systems.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/OJNANO.2021.3062495","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9364738/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Van der Waals p-n heterojunctions, consist of atomically thin two-dimensional (2D) layer semiconductors, have opened a promising avenue for the realization of ultrathin and ultralight photovoltaic solar cells. This feature enables them particularly be suitable as the micro/nanoscale solar energy-conversion units integrated in wireless power supply micro/nano-systems. However, solar energy harvest in these heterojunctions is hindered by inherent weak interlayer interaction at such ultrathin thickness. Herein, a novel integrated strategy by embedding metallic plasmonic pentamers optical nano-antenna array (ONAA) onto overlap region of black phosphorus-molybdenum disulfide (BP-MoS 2 ) p-n heterojunction is firstly exploited under both a near-infrared laser (λ = 830 nm) and standardized AM1.5G solar irradiation. Results show that profiting from plasmon-induced “hot” electrons and thermal field generating from gigantic near-field enhancement in 15 nm-ultrashort nanogap ONAAs and high intrinsic build-in field in atomically overlap region, this integrated configuration displays enhanced photovoltaic properties. Maximum short-circuits current (I sc = 0.53 μA) and open circuit voltage (V oc = 0.2 V) had been attained. Additional fill factor of 14% and double power conversion efficiencies amplification are measured via comparison of device without/with ONAAs. These findings strongly demonstrate this reliable enhancement strategy with integration of plasmonic physics into 2D heterojunctions for realizing energy harvesting unit in the wireless power supply micro/nano-systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体增强黑磷-二硫化钼异质结的光伏特性
Van der Waals p-n异质结由原子薄的二维(2D)层半导体组成,为实现超薄和超轻光伏太阳能电池开辟了一条有希望的途径。这一特性使它们特别适合作为集成在无线电源微/纳米系统中的微/纳米级太阳能转换单元。然而,在这种超薄厚度下,太阳能在这些异质结中的收获受到固有的弱层间相互作用的阻碍。本文首次在近红外激光(λ = 830 nm)和标准AM1.5G太阳辐照下,将金属等离子体五聚体光学纳米天线阵列(ONAA)嵌入黑磷-二硫化钼(BP-MoS2) p-n异质结重叠区域。结果表明,利用等离子体诱导的“热”电子和15 nm超短纳米间隙ONAAs中巨大近场增强产生的热场,以及原子重叠区域的高本征内建场,该集成结构具有增强的光伏性能。得到了最大短路电流(Isc = 0.53 μA)和开路电压(Voc = 0.2 V)。通过比较无/有onaa的器件,测量了14%的附加填充系数和双倍的功率转换效率放大。这些发现有力地证明了将等离子体物理集成到二维异质结中实现无线供电微/纳米系统中的能量收集单元的可靠增强策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
期刊最新文献
Enhanced Optical and Infrared Activity of Nanosphere Dimers Attributed to Dimer Geometry Fully 3D Printed Miniaturized Electrochemical Platform With Plug-and-Play Graphitized Electrodes: Exhaustively Validated for Dopamine Sensing Pseudo-Random Number Generators for Stochastic Computing (SC): Design and Analysis Design and Performance Analysis of ISFET Using Various Oxide Materials for Biosensing Applications Temperature-Dependent Hydrogen Modulations of Ultra-Scaled a-IGZO Thin Film Transistor Under Gate Bias Stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1