Martin Springer;Timothy J. Silverman;Nick Bosco;Junki Joe;Ingrid Repins
{"title":"Residual Stresses Affect Cell Fragment Movement","authors":"Martin Springer;Timothy J. Silverman;Nick Bosco;Junki Joe;Ingrid Repins","doi":"10.1109/JPHOTOV.2023.3269118","DOIUrl":null,"url":null,"abstract":"Predictive modeling tools such as the finite element method can be of tremendous help in assessing the reliability and long-term performance of photovoltaic modules. In order to obtain accurate results, the proper modeling of materials and manufacturing processes are of utmost importance. Module fabrication introduces thermo-mechanical stresses inside the module laminate, which need to be accounted for as residual stresses in finite element simulations. We found that cell fragment movement and crack opening displacements of fractured silicon cells within modules are affected by those residual stresses. Cell cracking remains a challenging topic in assessing the reliability and durability of damaged modules. Hence, accurately quantifying the separation and movement between cell fragments creates the foundation for establishing reliable lifetime and performance assessments of fractured silicon modules. We present a modeling approach that uses upper and lower bounds to accurately account for the residual stresses introduced by the module lamination process. We designed a four-point flexure coupon test of a laminated, fractured silicon strip to validate our numerical results and found good agreement between our modeling methodology and the experimental data. Finally, we discuss the implications of the residual stresses on the normal crack opening and metallization wear-out of fractured silicon cells.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"13 4","pages":"547-551"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10112583/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Predictive modeling tools such as the finite element method can be of tremendous help in assessing the reliability and long-term performance of photovoltaic modules. In order to obtain accurate results, the proper modeling of materials and manufacturing processes are of utmost importance. Module fabrication introduces thermo-mechanical stresses inside the module laminate, which need to be accounted for as residual stresses in finite element simulations. We found that cell fragment movement and crack opening displacements of fractured silicon cells within modules are affected by those residual stresses. Cell cracking remains a challenging topic in assessing the reliability and durability of damaged modules. Hence, accurately quantifying the separation and movement between cell fragments creates the foundation for establishing reliable lifetime and performance assessments of fractured silicon modules. We present a modeling approach that uses upper and lower bounds to accurately account for the residual stresses introduced by the module lamination process. We designed a four-point flexure coupon test of a laminated, fractured silicon strip to validate our numerical results and found good agreement between our modeling methodology and the experimental data. Finally, we discuss the implications of the residual stresses on the normal crack opening and metallization wear-out of fractured silicon cells.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.