{"title":"Do terrestrial gastropods use olfactory cues to locate and select food actively?","authors":"Tibor Kiss","doi":"10.1007/s10158-017-0202-2","DOIUrl":null,"url":null,"abstract":"<p><p>Having been investigated for over 40 years, some aspects of the biology of terrestrial gastropod's olfactory system have been challenging and highly contentious, while others still remain unresolved. For example, a number of terrestrial gastropod species can track the odor of food, while others have no strong preferences toward food odor; rather they find it by random encounter. Here, while assessing the most recent findings and comparing them with earlier studies, the aspects of the food selection based on olfactory cues are examined critically to highlight the speculations and controversies that have arisen. We analyzed and compared the potential role of airborne odors in the feeding behavior of several terrestrial gastropod species. The available results indicate that in the foraging of most of the terrestrial gastropod species odor cues contribute substantially to food finding and selection. The results also suggest, however, that what they will actually consume largely depends on where they live and the species of gastropod that they are. Due to the voluminous literature relevant to this object, this review is not intended to be exhaustive. Instead, I selected what I consider to be the most important or critical in studies regarding the role of the olfaction in feeding of terrestrial gastropods.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"17 3","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-017-0202-2","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-017-0202-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 17
Abstract
Having been investigated for over 40 years, some aspects of the biology of terrestrial gastropod's olfactory system have been challenging and highly contentious, while others still remain unresolved. For example, a number of terrestrial gastropod species can track the odor of food, while others have no strong preferences toward food odor; rather they find it by random encounter. Here, while assessing the most recent findings and comparing them with earlier studies, the aspects of the food selection based on olfactory cues are examined critically to highlight the speculations and controversies that have arisen. We analyzed and compared the potential role of airborne odors in the feeding behavior of several terrestrial gastropod species. The available results indicate that in the foraging of most of the terrestrial gastropod species odor cues contribute substantially to food finding and selection. The results also suggest, however, that what they will actually consume largely depends on where they live and the species of gastropod that they are. Due to the voluminous literature relevant to this object, this review is not intended to be exhaustive. Instead, I selected what I consider to be the most important or critical in studies regarding the role of the olfaction in feeding of terrestrial gastropods.
期刊介绍:
Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include:
Functional analysis of the invertebrate nervous system;
Molecular neuropharmacology and toxicology;
Neurogenetics and genomics;
Functional anatomy;
Neurodevelopment;
Neuronal networks;
Molecular and cellular mechanisms of behavior and behavioural plasticity.