Dávid Somogyvári, Ágnes Vehovszky, Anna Farkas, Réka Horváth, János Győri
{"title":"Multi-marker approach for the evaluation of environmental impacts of APACS 50WG on aquatic ecosystems.","authors":"Dávid Somogyvári, Ágnes Vehovszky, Anna Farkas, Réka Horváth, János Győri","doi":"10.1007/s10158-020-00254-2","DOIUrl":null,"url":null,"abstract":"<p><p>Neonicotinoids are the most widely used synthetic insecticides in the world. These insecticides are widely distributed in the ecosystem, indicating that more attention should be paid to the potential risks regarding their use in agriculture. Due their intensive use, non-target species in the environment are also exposed to their putative effects. Within acute exposure trials, the time related effect of sublethal dose of the neonicotinoid preparation APACS 50 WG was investigated on swimming behaviour and the multi-xenobiotic resistance system (MXR) activity, as a first line defence pathway of adult Dikerogammarus villosus. Results showed that treated animals manifested an increased swimming activity. Exposed animals were monitored by the rhodamine B accumulation assay, and APACS 50 WG exerted distinct changes in the MXR activity as well. Our results suggested that application of neonicotinoid at a low concentration (3.9 ng/l) contributed to the activation of locomotor activity and at the same concentration range the transmembrane transport mechanisms was altered too.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"20 4","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-020-00254-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-020-00254-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Neonicotinoids are the most widely used synthetic insecticides in the world. These insecticides are widely distributed in the ecosystem, indicating that more attention should be paid to the potential risks regarding their use in agriculture. Due their intensive use, non-target species in the environment are also exposed to their putative effects. Within acute exposure trials, the time related effect of sublethal dose of the neonicotinoid preparation APACS 50 WG was investigated on swimming behaviour and the multi-xenobiotic resistance system (MXR) activity, as a first line defence pathway of adult Dikerogammarus villosus. Results showed that treated animals manifested an increased swimming activity. Exposed animals were monitored by the rhodamine B accumulation assay, and APACS 50 WG exerted distinct changes in the MXR activity as well. Our results suggested that application of neonicotinoid at a low concentration (3.9 ng/l) contributed to the activation of locomotor activity and at the same concentration range the transmembrane transport mechanisms was altered too.
期刊介绍:
Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include:
Functional analysis of the invertebrate nervous system;
Molecular neuropharmacology and toxicology;
Neurogenetics and genomics;
Functional anatomy;
Neurodevelopment;
Neuronal networks;
Molecular and cellular mechanisms of behavior and behavioural plasticity.