Analysis of heat loss mechanisms for mobile tent-type refuge alternatives.

P T Bissert, D S Yantek, M D Klein, L Yan
{"title":"Analysis of heat loss mechanisms for mobile tent-type refuge alternatives.","authors":"P T Bissert,&nbsp;D S Yantek,&nbsp;M D Klein,&nbsp;L Yan","doi":"10.19150/trans.7329","DOIUrl":null,"url":null,"abstract":"<p><p>Federal regulations require that refuge alternatives (RAs) be located within 305 m (1,000 ft) of the working face and spaced at one-hour travel distances in the outby area in underground coal mines, in the event that miners cannot escape during a disaster. The Mine Safety and Health Administration mandates that RAs provide safe shelter and livable conditions for a minimum of 96 hours while maintaining the apparent temperature below 35 °C (95 °F). The U.S. National Institute for Occupational Safety and Health used a validated thermal simulation model to examine the mechanisms of heat loss from an RA to the ambient mine and the effect of mine strata composition on the final internal dry bulb temperature (DBT) for a mobile tent-type RA. The results of these studies show that 51 percent of the heat loss from the RA to the ambient mine is due to radiation and 31 percent to conduction. Three mine width and height configurations and four mine strata compositions were examined. The final DBT inside the RA after 96 hours varied by less than 1 °C (1.8 °F) for the three mine width/height configurations and by less than 2 °C (3.6 °F) for the four mine strata compositions.</p>","PeriodicalId":75236,"journal":{"name":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","volume":"340 1","pages":"70-74"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516479/pdf/nihms856581.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Society for Mining, Metallurgy, and Exploration, Inc","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19150/trans.7329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Federal regulations require that refuge alternatives (RAs) be located within 305 m (1,000 ft) of the working face and spaced at one-hour travel distances in the outby area in underground coal mines, in the event that miners cannot escape during a disaster. The Mine Safety and Health Administration mandates that RAs provide safe shelter and livable conditions for a minimum of 96 hours while maintaining the apparent temperature below 35 °C (95 °F). The U.S. National Institute for Occupational Safety and Health used a validated thermal simulation model to examine the mechanisms of heat loss from an RA to the ambient mine and the effect of mine strata composition on the final internal dry bulb temperature (DBT) for a mobile tent-type RA. The results of these studies show that 51 percent of the heat loss from the RA to the ambient mine is due to radiation and 31 percent to conduction. Three mine width and height configurations and four mine strata compositions were examined. The final DBT inside the RA after 96 hours varied by less than 1 °C (1.8 °F) for the three mine width/height configurations and by less than 2 °C (3.6 °F) for the four mine strata compositions.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动帐篷式避难方案的热损失机制分析。
联邦法规要求,如果矿工在灾难发生时无法逃生,避难所备选(RAs)必须位于距工作面305米(1000英尺)的范围内,并且在地下煤矿的外围区域间隔一小时的行程。美国矿山安全与健康管理局(Mine Safety and Health Administration)规定,RAs必须提供至少96小时的安全住所和宜居条件,同时保持地表温度低于35°C(95°F)。美国国家职业安全与健康研究所使用一个经过验证的热模拟模型,研究了移动帐篷式RA的热损失机制,以及矿井地层成分对最终内部干球温度(DBT)的影响。这些研究结果表明,从RA到周围矿井的热量损失中有51%是由于辐射,31%是由于传导。考察了三种矿井宽高形态和四种矿井地层组成。对于三种矿井宽度/高度配置,96小时后RA内的最终DBT变化小于1°C(1.8°F),对于四种矿井地层组成,DBT变化小于2°C(3.6°F)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TECHNOLOGIES FOR THE NEXT GENERATION CLOSED-CIRCUIT ESCAPE RESPIRATORS. Effect of discontinuity dip direction on hard rock pillar strength. Analysis of extensometer, photogrammetry and laser scanning monitoring techniques for measuring floor heave in an underground limestone mine. Smart monitoring and control system test apparatus. CFD gas distribution analysis for different continuous-miner scrubber redirection configurations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1