Naturalistic neuroscience and virtual reality.

IF 3.1 4区 医学 Q2 NEUROSCIENCES Frontiers in Systems Neuroscience Pub Date : 2022-11-17 eCollection Date: 2022-01-01 DOI:10.3389/fnsys.2022.896251
Kay Thurley
{"title":"Naturalistic neuroscience and virtual reality.","authors":"Kay Thurley","doi":"10.3389/fnsys.2022.896251","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual reality (VR) is one of the techniques that became particularly popular in neuroscience over the past few decades. VR experiments feature a closed-loop between sensory stimulation and behavior. Participants interact with the stimuli and not just passively perceive them. Several senses can be stimulated at once, large-scale environments can be simulated as well as social interactions. All of this makes VR experiences more natural than those in traditional lab paradigms. Compared to the situation in field research, a VR simulation is highly controllable and reproducible, as required of a laboratory technique used in the search for neural correlates of perception and behavior. VR is therefore considered a middle ground between ecological validity and experimental control. In this review, I explore the potential of VR in eliciting naturalistic perception and behavior in humans and non-human animals. In this context, I give an overview of recent virtual reality approaches used in neuroscientific research.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712202/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2022.896251","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Virtual reality (VR) is one of the techniques that became particularly popular in neuroscience over the past few decades. VR experiments feature a closed-loop between sensory stimulation and behavior. Participants interact with the stimuli and not just passively perceive them. Several senses can be stimulated at once, large-scale environments can be simulated as well as social interactions. All of this makes VR experiences more natural than those in traditional lab paradigms. Compared to the situation in field research, a VR simulation is highly controllable and reproducible, as required of a laboratory technique used in the search for neural correlates of perception and behavior. VR is therefore considered a middle ground between ecological validity and experimental control. In this review, I explore the potential of VR in eliciting naturalistic perception and behavior in humans and non-human animals. In this context, I give an overview of recent virtual reality approaches used in neuroscientific research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然神经科学和虚拟现实。
虚拟现实(VR)是过去几十年来在神经科学领域特别流行的技术之一。VR实验的特点是感觉刺激和行为之间的闭环。参与者与刺激互动,而不仅仅是被动地感知它们。可以同时刺激几种感官,可以模拟大规模的环境以及社会互动。所有这些都使VR体验比传统的实验室范例更加自然。与实地研究相比,VR模拟具有高度可控性和可重复性,这是用于寻找感知和行为的神经关联的实验室技术所要求的。因此,虚拟现实被认为是生态有效性和实验控制之间的中间地带。在这篇综述中,我探讨了VR在激发人类和非人类动物的自然感知和行为方面的潜力。在此背景下,我给出了最近在神经科学研究中使用的虚拟现实方法的概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
期刊最新文献
Corrigendum: The cerebellum and fear extinction: evidence from rodent and human studies. Asymmetry and rehabilitation of the subjective visual vertical in unilateral vestibular hypofunction patients Brain-consistent architecture for imagination. Corrigendum: Neurocognitive and cerebellar function in ADHD, autism and spinocerebellar ataxia. Occlusal effects on text reading: an eye-tracker study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1