Pub Date : 2025-01-08eCollection Date: 2024-01-01DOI: 10.3389/fnsys.2024.1524475
Michela Balconi, Laura Angioletti, Roberta A Allegretta
This study examines the impact of positive and negative feedback on recall of past decisions, focusing on behavioral performance and electrophysiological (EEG) responses. Participants completed a decision-making task involving 10 real-life scenarios, each followed by immediate positive or negative feedback. In a recall phase, participants' accuracy (ACC), errors (ERRs), and response times (RTs) were recorded alongside EEG data to analyze brain activity patterns related to recall. Results indicate that accurately recalled decisions with positive feedback had slower RTs, suggesting an attentional bias toward positive information that could increase cognitive load during memory retrieval. A lack of difference in recall accuracy implies that social stimuli and situational goals may influence the positivity bias. EEG data showed distinct patterns: lower alpha band activity in frontal regions (AF7, AF8) for both correct and incorrect decisions recall, reflecting focused attention and cognitive control. Correctly recalled decisions with negative feedback showed higher delta activity, often linked to aversive processing, while incorrect recalls with negative feedback showed higher beta and gamma activity. A theta band feedback-dependent modulation in electrode activity showed higher values for decisions with negative feedback, suggesting memory suppression. These findings suggest that recalling decisions linked to self-threatening feedback may require greater cognitive effort, as seen in increased beta and gamma activity, which may indicate motivational processing and selective memory suppression. This study provides insights into the neural mechanisms of feedback-based memory recall, showing how feedback valence affects not only behavioral outcomes but also the cognitive and emotional processes involved in decision recall.
{"title":"Which type of feedback-Positive or negative- reinforces decision recall? An EEG study.","authors":"Michela Balconi, Laura Angioletti, Roberta A Allegretta","doi":"10.3389/fnsys.2024.1524475","DOIUrl":"10.3389/fnsys.2024.1524475","url":null,"abstract":"<p><p>This study examines the impact of positive and negative feedback on recall of past decisions, focusing on behavioral performance and electrophysiological (EEG) responses. Participants completed a decision-making task involving 10 real-life scenarios, each followed by immediate positive or negative feedback. In a recall phase, participants' accuracy (ACC), errors (ERRs), and response times (RTs) were recorded alongside EEG data to analyze brain activity patterns related to recall. Results indicate that accurately recalled decisions with positive feedback had slower RTs, suggesting an attentional bias toward positive information that could increase cognitive load during memory retrieval. A lack of difference in recall accuracy implies that social stimuli and situational goals may influence the positivity bias. EEG data showed distinct patterns: lower alpha band activity in frontal regions (AF7, AF8) for both correct and incorrect decisions recall, reflecting focused attention and cognitive control. Correctly recalled decisions with negative feedback showed higher delta activity, often linked to aversive processing, while incorrect recalls with negative feedback showed higher beta and gamma activity. A theta band feedback-dependent modulation in electrode activity showed higher values for decisions with negative feedback, suggesting memory suppression. These findings suggest that recalling decisions linked to self-threatening feedback may require greater cognitive effort, as seen in increased beta and gamma activity, which may indicate motivational processing and selective memory suppression. This study provides insights into the neural mechanisms of feedback-based memory recall, showing how feedback valence affects not only behavioral outcomes but also the cognitive and emotional processes involved in decision recall.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1524475"},"PeriodicalIF":3.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Evidence increasingly shows that facial emotion recognition (FER) is impaired in refractory mesial temporal lobe epilepsy (rMTLE), especially in patients with a right focus. This study explores FER in both mild (mMTLE) and refractory forms, examining the influence of epileptic focus lateralization on FER.
Methods: 50 MTLE patients, categorized by epilepsy severity and focus lateralization, were compared with healthy controls. FER was assessed using the Ekman Faces Test (EFT), which evaluates recognition of six basic emotions, alongside a battery of cognitive and mood tests.
Results: mMTLE patients showed selective deficits in recognizing fear and anger, while rMTLE patients displayed broader deficits, affecting all emotions except surprise. Patients with a right focus underperformed across all negative emotions, whereas those with a left focus showed deficits mainly in fear and anger. Analysis indicated that early epilepsy onset was associated with poorer FER in right-focused patients; febrile seizures and mesial temporal sclerosis significantly impacted FER in left-focused patients.
Conclusion: MTLE affects circuits of FER even in mild subjects, although to a lesser extent than in refractory ones. Earlier onset of MTLE could disrupt the development of FER, possibly interfering during a critical phase of maturation of its circuits, when the focus is right. Conversely, left MTLE may cause less damage to FER circuits, requiring additional factors such as a history of febrile seizures and/or mesial temporal sclerosis for significant impact. Clinically, refractory and right-sided MTLE might be viewed as risk factors of FER deficits.
{"title":"Exploring the role of epileptic focus lateralization on facial emotion recognition in the spectrum of mesial temporal lobe epilepsy.","authors":"Fabio Iannaccone, Chiara Pizzanelli, Francesca Lorenzini, Francesco Turco, Chiara Milano, Claudia Scarpitta, Luca Tommasini, Gloria Tognoni, Riccardo Morganti, Enrica Bonanni, Gabriele Siciliano","doi":"10.3389/fnsys.2024.1491791","DOIUrl":"https://doi.org/10.3389/fnsys.2024.1491791","url":null,"abstract":"<p><strong>Introduction: </strong>Evidence increasingly shows that facial emotion recognition (FER) is impaired in refractory mesial temporal lobe epilepsy (rMTLE), especially in patients with a right focus. This study explores FER in both mild (mMTLE) and refractory forms, examining the influence of epileptic focus lateralization on FER.</p><p><strong>Methods: </strong>50 MTLE patients, categorized by epilepsy severity and focus lateralization, were compared with healthy controls. FER was assessed using the Ekman Faces Test (EFT), which evaluates recognition of six basic emotions, alongside a battery of cognitive and mood tests.</p><p><strong>Results: </strong>mMTLE patients showed selective deficits in recognizing fear and anger, while rMTLE patients displayed broader deficits, affecting all emotions except surprise. Patients with a right focus underperformed across all negative emotions, whereas those with a left focus showed deficits mainly in fear and anger. Analysis indicated that early epilepsy onset was associated with poorer FER in right-focused patients; febrile seizures and mesial temporal sclerosis significantly impacted FER in left-focused patients.</p><p><strong>Conclusion: </strong>MTLE affects circuits of FER even in mild subjects, although to a lesser extent than in refractory ones. Earlier onset of MTLE could disrupt the development of FER, possibly interfering during a critical phase of maturation of its circuits, when the focus is right. Conversely, left MTLE may cause less damage to FER circuits, requiring additional factors such as a history of febrile seizures and/or mesial temporal sclerosis for significant impact. Clinically, refractory and right-sided MTLE might be viewed as risk factors of FER deficits.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1491791"},"PeriodicalIF":3.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering. To advance the understanding of fear and stress, this study presents a biologically and behaviorally plausible computational architecture that integrates several subregions of key brain structures, such as the amygdala, hippocampus, and medial prefrontal cortex. Additionally, the model incorporates stress hormone curves and employs spiking neural networks with conductance-based integrate-and-fire neurons. The proposed approach was validated using the well-established Contextual Fear Conditioning paradigm and subsequently tested with IED and SEFL protocols. The results confirmed that higher intensity aversive stimuli result in more robust and persistent fear memories, making extinction more challenging. They also underscore the importance of the timing of extinction and the significant influence of stress. To our knowledge, this is the first instance of computational modeling being applied to IED and SEFL protocols. This study validates our computational model's complexity and biological realism in analyzing responses to fear and stress through fear conditioning, IED, and SEFL protocols. Rather than providing new biological insights, the primary contribution of this work lies in its methodological innovation, demonstrating that complex, biologically plausible neural architectures can effectively replicate established findings in fear and stress research. By simulating protocols typically conducted in vivo-often involving significant pain and suffering-in an insilico environment, our model offers a promising tool for studying fear-related mechanisms. These findings support the potential of computational models to reduce the reliance on animal testing while setting the stage for new therapeutic approaches.
{"title":"Computational modeling of fear and stress responses: validation using consolidated fear and stress protocols.","authors":"Brunna Carolinne Rocha Silva Furriel, Geovanne Pereira Furriel, Mauro Cunha Xavier Pinto, Rodrigo Pinto Lemos","doi":"10.3389/fnsys.2024.1454336","DOIUrl":"https://doi.org/10.3389/fnsys.2024.1454336","url":null,"abstract":"<p><p>Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering. To advance the understanding of fear and stress, this study presents a biologically and behaviorally plausible computational architecture that integrates several subregions of key brain structures, such as the amygdala, hippocampus, and medial prefrontal cortex. Additionally, the model incorporates stress hormone curves and employs spiking neural networks with conductance-based integrate-and-fire neurons. The proposed approach was validated using the well-established Contextual Fear Conditioning paradigm and subsequently tested with IED and SEFL protocols. The results confirmed that higher intensity aversive stimuli result in more robust and persistent fear memories, making extinction more challenging. They also underscore the importance of the timing of extinction and the significant influence of stress. To our knowledge, this is the first instance of computational modeling being applied to IED and SEFL protocols. This study validates our computational model's complexity and biological realism in analyzing responses to fear and stress through fear conditioning, IED, and SEFL protocols. Rather than providing new biological insights, the primary contribution of this work lies in its methodological innovation, demonstrating that complex, biologically plausible neural architectures can effectively replicate established findings in fear and stress research. By simulating protocols typically conducted <i>in vivo</i>-often involving significant pain and suffering-in an insilico environment, our model offers a promising tool for studying fear-related mechanisms. These findings support the potential of computational models to reduce the reliance on animal testing while setting the stage for new therapeutic approaches.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1454336"},"PeriodicalIF":3.1,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04eCollection Date: 2024-01-01DOI: 10.3389/fnsys.2024.1489949
Qijun Wang, Anjuan Gong, Zhen Feng, Yang Bai, Ulf Ziemann
Brain responses to transcranial magnetic stimulation (TMS) can be recorded with electroencephalography (EEG) and comprise TMS-evoked potentials and TMS-induced oscillations. Repetitive TMS may entrain endogenous brain oscillations. In turn, ongoing brain oscillations prior to the TMS pulse can influence the effects of the TMS pulse. These intricate TMS-EEG and EEG-TMS interactions are increasingly attracting the interest of researchers and clinicians. This review surveys the literature of TMS and its interactions with brain oscillations as measured by EEG in health and disease.
{"title":"Interactions of transcranial magnetic stimulation with brain oscillations: a narrative review.","authors":"Qijun Wang, Anjuan Gong, Zhen Feng, Yang Bai, Ulf Ziemann","doi":"10.3389/fnsys.2024.1489949","DOIUrl":"10.3389/fnsys.2024.1489949","url":null,"abstract":"<p><p>Brain responses to transcranial magnetic stimulation (TMS) can be recorded with electroencephalography (EEG) and comprise TMS-evoked potentials and TMS-induced oscillations. Repetitive TMS may entrain endogenous brain oscillations. In turn, ongoing brain oscillations prior to the TMS pulse can influence the effects of the TMS pulse. These intricate TMS-EEG and EEG-TMS interactions are increasingly attracting the interest of researchers and clinicians. This review surveys the literature of TMS and its interactions with brain oscillations as measured by EEG in health and disease.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1489949"},"PeriodicalIF":3.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04eCollection Date: 2024-01-01DOI: 10.3389/fnsys.2024.1481585
Yong Sang Jo, Gyeong Hee Pyeon, Sheri J Y Mizumori
In many real-life situations, decisions involve temporal delays between actions and their outcomes. During these intervals, waiting is an active process that requires maintaining motivation and anticipating future rewards. This study aimed to explore the role of the midbrain reticular formation (MRF) in delay-based decision-making. We recorded neural activity in the MRF while rats performed delay discounting and reward discrimination tasks, choosing between a smaller, sooner reward and a larger, later reward. Our findings reveal that MRF neurons are integral to maintaining motivation during waiting periods by encoding both the anticipated size and the discounted value of delayed rewards. Furthermore, the inactivation of the MRF led to a significant reduction in the rats' willingness to wait for delayed rewards. These results demonstrate the MRF's function in balancing the trade-offs between reward magnitude and timing, providing insight into the neural mechanisms that support sustained motivation and decision-making over time.
{"title":"A role for the midbrain reticular formation in delay-based decision making.","authors":"Yong Sang Jo, Gyeong Hee Pyeon, Sheri J Y Mizumori","doi":"10.3389/fnsys.2024.1481585","DOIUrl":"10.3389/fnsys.2024.1481585","url":null,"abstract":"<p><p>In many real-life situations, decisions involve temporal delays between actions and their outcomes. During these intervals, waiting is an active process that requires maintaining motivation and anticipating future rewards. This study aimed to explore the role of the midbrain reticular formation (MRF) in delay-based decision-making. We recorded neural activity in the MRF while rats performed delay discounting and reward discrimination tasks, choosing between a smaller, sooner reward and a larger, later reward. Our findings reveal that MRF neurons are integral to maintaining motivation during waiting periods by encoding both the anticipated size and the discounted value of delayed rewards. Furthermore, the inactivation of the MRF led to a significant reduction in the rats' willingness to wait for delayed rewards. These results demonstrate the MRF's function in balancing the trade-offs between reward magnitude and timing, providing insight into the neural mechanisms that support sustained motivation and decision-making over time.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1481585"},"PeriodicalIF":3.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04eCollection Date: 2024-01-01DOI: 10.3389/fnsys.2024.1367525
Xiaohan Bao, Paisley Barnes, Stephen G Lomber
Evoked potentials can be used as an intraoperative monitoring measure in neurological surgery. Auditory evoked potentials (AEPs), or specifically brainstem auditory evoked responses (BAERs), are known for being minimally affected by anesthetics, while visually evoked potentials (VEPs) are presumed to be unreliable and easily affected by anesthetics. While many anesthesia trials or intraoperative recordings have provided evidence in support of these hypotheses, the comparisons were always made between AEPs and VEPs recorded sequentially, rather than recorded at the same time. Although the logistics of improving data comparability of AEPs and VEPs may be a challenge in clinical settings, it is much more approachable in animal models to measure AEPs and VEPs as simultaneously as possible. Five cats under dexmedetomidine sedation received five, 10-min blocks of isoflurane with varying concentrations while click-evoked AEPs and flash-evoked VEPs were recorded from subdermal electrodes. We found that, in terms of their waveforms, (1) short-latency AEPs (BAERs) were the least affected while middle-latency AEPs were dramatically altered by isoflurane, and (2) short-latency VEPs was less persistent than that of short-latency AEPs, while both middle- and long-latency VEPs were largely suppressed by isoflurane and, in some cases, completely diminished. In addition, the signal strength in all but the middle-latency AEPs was significantly suppressed by isoflurane. We identified multiple AEP or VEP peak components demonstrating suppressed amplitudes and/or changed latencies by isoflurane. Overall, we confirmed that both cat AEPs and VEPs are affected during isoflurane anesthesia, as in humans.
{"title":"Differential effects of isoflurane on auditory and visually evoked potentials in the cat.","authors":"Xiaohan Bao, Paisley Barnes, Stephen G Lomber","doi":"10.3389/fnsys.2024.1367525","DOIUrl":"10.3389/fnsys.2024.1367525","url":null,"abstract":"<p><p>Evoked potentials can be used as an intraoperative monitoring measure in neurological surgery. Auditory evoked potentials (AEPs), or specifically brainstem auditory evoked responses (BAERs), are known for being minimally affected by anesthetics, while visually evoked potentials (VEPs) are presumed to be unreliable and easily affected by anesthetics. While many anesthesia trials or intraoperative recordings have provided evidence in support of these hypotheses, the comparisons were always made between AEPs and VEPs recorded sequentially, rather than recorded at the same time. Although the logistics of improving data comparability of AEPs and VEPs may be a challenge in clinical settings, it is much more approachable in animal models to measure AEPs and VEPs as simultaneously as possible. Five cats under dexmedetomidine sedation received five, 10-min blocks of isoflurane with varying concentrations while click-evoked AEPs and flash-evoked VEPs were recorded from subdermal electrodes. We found that, in terms of their waveforms, (1) short-latency AEPs (BAERs) were the least affected while middle-latency AEPs were dramatically altered by isoflurane, and (2) short-latency VEPs was less persistent than that of short-latency AEPs, while both middle- and long-latency VEPs were largely suppressed by isoflurane and, in some cases, completely diminished. In addition, the signal strength in all but the middle-latency AEPs was significantly suppressed by isoflurane. We identified multiple AEP or VEP peak components demonstrating suppressed amplitudes and/or changed latencies by isoflurane. Overall, we confirmed that both cat AEPs and VEPs are affected during isoflurane anesthesia, as in humans.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1367525"},"PeriodicalIF":3.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27eCollection Date: 2024-01-01DOI: 10.3389/fnsys.2024.1489919
Seungho Kim, Ji-Hye Kim, Hansol Lee, Sung Ho Jang, Ralph Noeske, Changho Choi, Yongmin Chang, Youn-Hee Choi
Introduction: Chewing has been reported to enhance cognitive function through the increase in cerebral blood flow. However, the mechanisms linking cerebral blood flow increase to metabolic changes in the brain affecting cognition remain unclear. We hypothesized that glutathione (GSH) plays a pivotal role in these mechanisms. Therefore, this study aimed to investigate changes in brain GSH levels following chewing and their association with cognitive function in healthy young adults.
Methods: A total of 52 university students were recruited, and the Korean version of the Repeatable Battery for the Assessment of Neuropsychological Status was used for the neurocognitive evaluations. Brain GSH levels following chewing gum or wood blocks were measured using MEscher-GArwood Point RESolved Spectroscopy (MEGA-PRESS) sequence, and their relevance to neurocognitive evaluation results was investigated.
Results: Chewing significantly increased brain GSH concentration, particularly in the wood-chewing group compared to the gum-chewing group, as observed in the anterior cingulate cortex. Furthermore, the rise in GSH concentration in the wood-chewing group was positively correlated with memory function.
Conclusion: Chewing moderately hard material elevates brain antioxidant levels such as GSH, potentially influencing cognitive function.
{"title":"Effect of chewing hard material on boosting brain antioxidant levels and enhancing cognitive function.","authors":"Seungho Kim, Ji-Hye Kim, Hansol Lee, Sung Ho Jang, Ralph Noeske, Changho Choi, Yongmin Chang, Youn-Hee Choi","doi":"10.3389/fnsys.2024.1489919","DOIUrl":"10.3389/fnsys.2024.1489919","url":null,"abstract":"<p><strong>Introduction: </strong>Chewing has been reported to enhance cognitive function through the increase in cerebral blood flow. However, the mechanisms linking cerebral blood flow increase to metabolic changes in the brain affecting cognition remain unclear. We hypothesized that glutathione (GSH) plays a pivotal role in these mechanisms. Therefore, this study aimed to investigate changes in brain GSH levels following chewing and their association with cognitive function in healthy young adults.</p><p><strong>Methods: </strong>A total of 52 university students were recruited, and the Korean version of the Repeatable Battery for the Assessment of Neuropsychological Status was used for the neurocognitive evaluations. Brain GSH levels following chewing gum or wood blocks were measured using MEscher-GArwood Point RESolved Spectroscopy (MEGA-PRESS) sequence, and their relevance to neurocognitive evaluation results was investigated.</p><p><strong>Results: </strong>Chewing significantly increased brain GSH concentration, particularly in the wood-chewing group compared to the gum-chewing group, as observed in the anterior cingulate cortex. Furthermore, the rise in GSH concentration in the wood-chewing group was positively correlated with memory function.</p><p><strong>Conclusion: </strong>Chewing moderately hard material elevates brain antioxidant levels such as GSH, potentially influencing cognitive function.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1489919"},"PeriodicalIF":3.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31eCollection Date: 2024-01-01DOI: 10.3389/fnsys.2024.1423966
Carley Rivers, Christopher Farber, Melissa Heath, Elisa Gonzales, Douglas W Barrett, F Gonzalez-Lima, Michelle A Lane
Introduction: Previously, we showed that omega-3 polyunsaturated fatty acid n-3 (PUFA) supplementation improved the performance of postpartum rats in the shuttle box escape test (SBET).
Methods: The brains of these rats were used in the current study which examined brain cytochrome c oxidase (CCO) activity in white matter bundles and 39 regions spanning sensorimotor, limbic, and cognitive areas to determine the effects of n-3 PUFAs on neural metabolic capacity and network interactions.
Results: We found that n-3 PUFA supplementation decreased CCO activity in white matter bundles, deep and superficial areas within the inferior colliculus, the anterior and barrel field regions of the primary somatic sensorimotor cortex, the secondary somatic sensorimotor cortex, the lateral, anterior regions of the secondary visual cortex and the ventral posterior nucleus of the thalamus, and the medial nucleus of the amygdala. Structural equation modeling revealed that animals consuming diets without n-3 PUFAs exhibited fewer inter-regional interactions when compared to those fed diets with n-3 PUFAs. Without n-3 PUFAs, inter-regional interactions were observed between the posterior cingulate cortex and amygdala as well as among amygdala subregions. With n-3 PUFAs, more inter-regional interactions were observed, particularly between regions associated with fear memory processing and escape. Correlations between regional CCO activity and SBET behavior were observed in rats lacking dietary n-3 PUFAs but not in those supplemented with these nutrients.
Discussion: In conclusion, consumption of n-3 PUFAs results in reduced CCO activity in white matter bundles and sensorimotor regions, reflecting more efficient neurotransmission, and an increase in inter-regional interactions, facilitating escape from footshock.
{"title":"Dietary omega-3 polyunsaturated fatty acids reduce cytochrome c oxidase in brain white matter and sensorimotor regions while increasing functional interactions between neural systems related to escape behavior in postpartum rats.","authors":"Carley Rivers, Christopher Farber, Melissa Heath, Elisa Gonzales, Douglas W Barrett, F Gonzalez-Lima, Michelle A Lane","doi":"10.3389/fnsys.2024.1423966","DOIUrl":"10.3389/fnsys.2024.1423966","url":null,"abstract":"<p><strong>Introduction: </strong>Previously, we showed that omega-3 polyunsaturated fatty acid n-3 (PUFA) supplementation improved the performance of postpartum rats in the shuttle box escape test (SBET).</p><p><strong>Methods: </strong>The brains of these rats were used in the current study which examined brain cytochrome c oxidase (CCO) activity in white matter bundles and 39 regions spanning sensorimotor, limbic, and cognitive areas to determine the effects of n-3 PUFAs on neural metabolic capacity and network interactions.</p><p><strong>Results: </strong>We found that n-3 PUFA supplementation decreased CCO activity in white matter bundles, deep and superficial areas within the inferior colliculus, the anterior and barrel field regions of the primary somatic sensorimotor cortex, the secondary somatic sensorimotor cortex, the lateral, anterior regions of the secondary visual cortex and the ventral posterior nucleus of the thalamus, and the medial nucleus of the amygdala. Structural equation modeling revealed that animals consuming diets without n-3 PUFAs exhibited fewer inter-regional interactions when compared to those fed diets with n-3 PUFAs. Without n-3 PUFAs, inter-regional interactions were observed between the posterior cingulate cortex and amygdala as well as among amygdala subregions. With n-3 PUFAs, more inter-regional interactions were observed, particularly between regions associated with fear memory processing and escape. Correlations between regional CCO activity and SBET behavior were observed in rats lacking dietary n-3 PUFAs but not in those supplemented with these nutrients.</p><p><strong>Discussion: </strong>In conclusion, consumption of n-3 PUFAs results in reduced CCO activity in white matter bundles and sensorimotor regions, reflecting more efficient neurotransmission, and an increase in inter-regional interactions, facilitating escape from footshock.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1423966"},"PeriodicalIF":3.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23eCollection Date: 2024-01-01DOI: 10.3389/fnsys.2024.1478019
Wajd Amly, Chih-Yang Chen, Tadashi Isa
Marmosets are expected to serve as a valuable model for studying the primate visuomotor system due to their similar oculomotor behaviors to humans and macaques. Despite these similarities, differences exist; challenges in training marmosets on tasks requiring suppression of unwanted saccades, having consistently shorter, yet more variable saccade reaction times (SRT) compared to humans and macaques. This study investigates whether the short and variable SRT in marmosets is related to differences in visual signal transduction and variability in inhibitory control. We refined a computational SRT model, adjusting parameters to better capture the marmoset SRT distribution in a gap saccade task. Our findings indicate that visual information processing is faster in marmosets, and that saccadic inhibition is more variable compared to other species.
{"title":"Modeling saccade reaction time in marmosets: the contribution of earlier visual response and variable inhibition.","authors":"Wajd Amly, Chih-Yang Chen, Tadashi Isa","doi":"10.3389/fnsys.2024.1478019","DOIUrl":"10.3389/fnsys.2024.1478019","url":null,"abstract":"<p><p>Marmosets are expected to serve as a valuable model for studying the primate visuomotor system due to their similar oculomotor behaviors to humans and macaques. Despite these similarities, differences exist; challenges in training marmosets on tasks requiring suppression of unwanted saccades, having consistently shorter, yet more variable saccade reaction times (SRT) compared to humans and macaques. This study investigates whether the short and variable SRT in marmosets is related to differences in visual signal transduction and variability in inhibitory control. We refined a computational SRT model, adjusting parameters to better capture the marmoset SRT distribution in a gap saccade task. Our findings indicate that visual information processing is faster in marmosets, and that saccadic inhibition is more variable compared to other species.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1478019"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13eCollection Date: 2024-01-01DOI: 10.3389/fnsys.2024.1488334
Alice Doubliez, Enzo Nio, Fernando Senovilla-Sanz, Vasiliki Spatharioti, Richard Apps, Dagmar Timmann, Charlotte L Lawrenson
[This corrects the article DOI: 10.3389/fnsys.2023.1166166.].
[This corrects the article DOI: 10.3389/fnsys.2023.1166166.].
{"title":"Corrigendum: The cerebellum and fear extinction: evidence from rodent and human studies.","authors":"Alice Doubliez, Enzo Nio, Fernando Senovilla-Sanz, Vasiliki Spatharioti, Richard Apps, Dagmar Timmann, Charlotte L Lawrenson","doi":"10.3389/fnsys.2024.1488334","DOIUrl":"https://doi.org/10.3389/fnsys.2024.1488334","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.3389/fnsys.2023.1166166.].</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"18 ","pages":"1488334"},"PeriodicalIF":3.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}