下载PDF
{"title":"Single-Cell Functional Analysis of Stem-Cell Derived Cardiomyocytes on Micropatterned Flexible Substrates","authors":"Jan David Kijlstra, Dongjian Hu, Peter van der Meer, Ibrahim J. Domian","doi":"10.1002/cpsc.40","DOIUrl":null,"url":null,"abstract":"<p>Human pluripotent stem–cell derived cardiomyocytes (hPSC-CMs) hold great promise for applications in human disease modeling, drug discovery, cardiotoxicity screening, and, ultimately, regenerative medicine. The ability to study multiple parameters of hPSC-CM function, such as contractile and electrical activity, calcium cycling, and force generation, is therefore of paramount importance. hPSC-CMs cultured on stiff substrates like glass or polystyrene do not have the ability to shorten during contraction, making them less suitable for the study of hPSC-CM contractile function. Other approaches require highly specialized hardware and are difficult to reproduce. Here we describe a protocol for the preparation of hPSC-CMs on soft substrates that enable shortening, and subsequently the simultaneous quantitative analysis of their contractile and electrical activity, calcium cycling, and force generation at single-cell resolution. This protocol requires only affordable and readily available materials and works with standard imaging hardware. © 2017 by John Wiley & Sons, Inc.</p>","PeriodicalId":53703,"journal":{"name":"Current Protocols in Stem Cell Biology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpsc.40","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Stem Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5
引用
批量引用
Abstract
Human pluripotent stem–cell derived cardiomyocytes (hPSC-CMs) hold great promise for applications in human disease modeling, drug discovery, cardiotoxicity screening, and, ultimately, regenerative medicine. The ability to study multiple parameters of hPSC-CM function, such as contractile and electrical activity, calcium cycling, and force generation, is therefore of paramount importance. hPSC-CMs cultured on stiff substrates like glass or polystyrene do not have the ability to shorten during contraction, making them less suitable for the study of hPSC-CM contractile function. Other approaches require highly specialized hardware and are difficult to reproduce. Here we describe a protocol for the preparation of hPSC-CMs on soft substrates that enable shortening, and subsequently the simultaneous quantitative analysis of their contractile and electrical activity, calcium cycling, and force generation at single-cell resolution. This protocol requires only affordable and readily available materials and works with standard imaging hardware. © 2017 by John Wiley & Sons, Inc.
微图案柔性基质上干细胞衍生心肌细胞的单细胞功能分析
人类多能干细胞来源的心肌细胞(hPSC-CMs)在人类疾病建模、药物发现、心脏毒性筛选以及最终的再生医学方面有着巨大的应用前景。因此,研究hPSC-CM功能的多个参数,如收缩和电活动、钙循环和力产生的能力是至关重要的。在玻璃或聚苯乙烯等坚硬基质上培养的hspc - cm在收缩过程中不具有缩短的能力,因此不太适合研究hspc - cm的收缩功能。其他方法需要高度专业化的硬件,而且很难复制。在这里,我们描述了一种在软底物上制备hPSC-CMs的方案,该方案可以缩短,随后在单细胞分辨率下同时定量分析其收缩和电活动,钙循环和力产生。该协议只需要负担得起且容易获得的材料,并与标准成像硬件一起工作。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。