BAYESIAN SEMIPARAMETRIC LONG MEMORY MODELS FOR DISCRETIZED EVENT DATA.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2022-09-01 Epub Date: 2022-07-19 DOI:10.1214/21-aoas1546
Antik Chakraborty, Otso Ovaskainen, David B Dunson
{"title":"BAYESIAN SEMIPARAMETRIC LONG MEMORY MODELS FOR DISCRETIZED EVENT DATA.","authors":"Antik Chakraborty,&nbsp;Otso Ovaskainen,&nbsp;David B Dunson","doi":"10.1214/21-aoas1546","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a new class of semiparametric latent variable models for long memory discretized event data. The proposed methodology is motivated by a study of bird vocalizations in the Amazon rain forest; the timings of vocalizations exhibit self-similarity and long range dependence. This rules out Poisson process based models where the rate function itself is not long range dependent. The proposed class of FRActional Probit (FRAP) models is based on thresholding, a latent process. This latent process is modeled by a smooth Gaussian process and a fractional Brownian motion by assuming an additive structure. We develop a Bayesian approach to inference using Markov chain Monte Carlo and show good performance in simulation studies. Applying the methods to the Amazon bird vocalization data, we find substantial evidence for self-similarity and non-Markovian/Poisson dynamics. To accommodate the bird vocalization data in which there are many different species of birds exhibiting their own vocalization dynamics, a hierarchical expansion of FRAP is provided in the Supplementary Material.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718501/pdf/nihms-1846463.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aoas1546","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new class of semiparametric latent variable models for long memory discretized event data. The proposed methodology is motivated by a study of bird vocalizations in the Amazon rain forest; the timings of vocalizations exhibit self-similarity and long range dependence. This rules out Poisson process based models where the rate function itself is not long range dependent. The proposed class of FRActional Probit (FRAP) models is based on thresholding, a latent process. This latent process is modeled by a smooth Gaussian process and a fractional Brownian motion by assuming an additive structure. We develop a Bayesian approach to inference using Markov chain Monte Carlo and show good performance in simulation studies. Applying the methods to the Amazon bird vocalization data, we find substantial evidence for self-similarity and non-Markovian/Poisson dynamics. To accommodate the bird vocalization data in which there are many different species of birds exhibiting their own vocalization dynamics, a hierarchical expansion of FRAP is provided in the Supplementary Material.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散事件数据的贝叶斯半参数长记忆模型。
针对长记忆离散事件数据,提出了一类新的半参数潜变量模型。提出的方法的动机是对亚马逊雨林中鸟类发声的研究;发声的时间表现出自相似性和长距离依赖性。这排除了基于泊松过程的模型,其中速率函数本身不是长期依赖的。所提出的分数概率(FRAP)模型是基于阈值,一个潜在的过程。这个潜在过程通过假设一个加性结构,用光滑高斯过程和分数布朗运动来建模。我们开发了一种基于马尔可夫链蒙特卡罗的贝叶斯推理方法,并在仿真研究中显示出良好的性能。将该方法应用于亚马逊鸟类发声数据,我们发现了自相似性和非马尔可夫/泊松动力学的大量证据。为了适应鸟类发声数据,其中有许多不同种类的鸟类表现出自己的发声动态,在补充材料中提供了FRAP的分层扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS. EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1