Biophysics of Microtubule End Coupling at the Kinetochore.

Ekaterina L Grishchuk
{"title":"Biophysics of Microtubule End Coupling at the Kinetochore.","authors":"Ekaterina L Grishchuk","doi":"10.1007/978-3-319-58592-5_17","DOIUrl":null,"url":null,"abstract":"<p><p>The main physiological function of mitotic kinetochores is to provide durable attachment to spindle microtubules, which segregate chromosomes in order to partition them equally between the two daughter cells. Numerous kinetochore components that can bind directly to microtubules have been identified, including ATP-dependent motors and various microtubule-associated proteins with no motor activity. A major challenge facing the field is to explain chromosome motions based on the biochemical and structural properties of these individual kinetochore components and their assemblies. This chapter reviews the molecular mechanisms responsible for the motions associated with dynamic microtubule tips at the single-molecule level, as well as the activities of multimolecular ensembles called couplers. These couplers enable persistent kinetochore motion even under load, but their exact composition and structure remain unknown. Because no natural or artificial macro-machines function in an analogous manner to these molecular nano-devices, understanding their underlying biophysical mechanisms will require conceptual advances.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_17","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-58592-5_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 20

Abstract

The main physiological function of mitotic kinetochores is to provide durable attachment to spindle microtubules, which segregate chromosomes in order to partition them equally between the two daughter cells. Numerous kinetochore components that can bind directly to microtubules have been identified, including ATP-dependent motors and various microtubule-associated proteins with no motor activity. A major challenge facing the field is to explain chromosome motions based on the biochemical and structural properties of these individual kinetochore components and their assemblies. This chapter reviews the molecular mechanisms responsible for the motions associated with dynamic microtubule tips at the single-molecule level, as well as the activities of multimolecular ensembles called couplers. These couplers enable persistent kinetochore motion even under load, but their exact composition and structure remain unknown. Because no natural or artificial macro-machines function in an analogous manner to these molecular nano-devices, understanding their underlying biophysical mechanisms will require conceptual advances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
着丝点微管末端耦合的生物物理学。
有丝分裂着丝点的主要生理功能是为纺锤体微管提供持久的附着,纺锤体微管将染色体分离,以便在两个子细胞之间平均分配。许多可以直接与微管结合的着丝点成分已经被确定,包括atp依赖的马达和各种无运动活性的微管相关蛋白。该领域面临的一个主要挑战是根据这些单个着丝点组分及其组装的生化和结构特性来解释染色体运动。本章回顾了在单分子水平上负责与动态微管尖端相关的运动的分子机制,以及称为耦合器的多分子合集的活动。这些偶联剂即使在负载下也能使着丝点持续运动,但它们的确切组成和结构尚不清楚。因为没有任何自然或人工的宏观机器以类似于这些分子纳米装置的方式运作,理解它们潜在的生物物理机制将需要概念上的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
7
期刊介绍: Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.
期刊最新文献
Inorganic Polyphosphate and F0F1-ATP Synthase of Mammalian Mitochondria. Inorganic Polyphosphate in Mitochondrial Energy Metabolism and Pathology. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1