{"title":"A compact targeted drug delivery mechanism for a next generation wireless capsule endoscope.","authors":"Stephen P Woods, Timothy G Constandinou","doi":"10.1007/s12213-016-0088-9","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reports a novel medication release and delivery mechanism as part of a next generation wireless capsule endoscope (WCE) for targeted drug delivery. This subsystem occupies a volume of only 17.9mm<sup>3</sup> for the purpose of delivering a 1 ml payload to a target site of interest in the small intestinal tract. An in-depth analysis of the method employed to release and deliver the medication is described and a series of experiments is presented which validates the drug delivery system. The results show that a variable pitch conical compression spring manufactured from stainless steel can deliver 0.59 N when it is fully compressed and that this would be sufficient force to deliver the onboard medication.</p>","PeriodicalId":44493,"journal":{"name":"Journal of Micro-Bio Robotics","volume":"11 1","pages":"19-34"},"PeriodicalIF":1.6000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro-Bio Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12213-016-0088-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports a novel medication release and delivery mechanism as part of a next generation wireless capsule endoscope (WCE) for targeted drug delivery. This subsystem occupies a volume of only 17.9mm3 for the purpose of delivering a 1 ml payload to a target site of interest in the small intestinal tract. An in-depth analysis of the method employed to release and deliver the medication is described and a series of experiments is presented which validates the drug delivery system. The results show that a variable pitch conical compression spring manufactured from stainless steel can deliver 0.59 N when it is fully compressed and that this would be sufficient force to deliver the onboard medication.
期刊介绍:
The Journal of Micro-Bio Robotics (JMBR) focuses on small-scale robotic systems, which could be also biologically inspired, integrated with biological entities, or used for biological or biomedical applications. The journal aims to report the significant progresses in such new research topics.
JMBR is devoted to the theory, experiments, and applications of micro/nano- and biotechnologies and small-scale robotics. It promotes both theoretical and practical engineering research based on the analysis and synthesis from the micro/nano level to the biological level of robotics. JMBR includes survey and research articles.
Authors are invited to submit their original research articles or review articles for publication consideration. All submissions will be peer reviewed subject to the standards of the journal. Manuscripts based on previously published conference papers must be extended substantially.