The regulation of snail: on the ubiquitin edge.

Cancer cell & microenvironment Pub Date : 2017-01-01 Epub Date: 2017-07-03
Qian Yu, Binhua P Zhou, Yadi Wu
{"title":"The regulation of snail: on the ubiquitin edge.","authors":"Qian Yu,&nbsp;Binhua P Zhou,&nbsp;Yadi Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Metastasis accounts for a majority of cancer death. One key feature during metastasis is epithelial-mesenchymal transition (EMT), which is regulated by transcription factors such as Snail and Twist. In non-malignant cells, Snail has a short half-life and is degraded via ubiquitination, but its stability is increased in cancer cell. However, the mechanism by which Snail escapes ubiquitination and degradation remains unknown. Recently, we found that Dub3 is a deubiquinase of Snail. Most importantly, we determined that Dub3 responded to extracellular signals such as IL-6, and that the resultant signaling prevented Snail degradation, and promoted cancer growth, invasion, and migration. In this highlight, we present a concise picture of how the transcription factor Snail is regulated by ubiquitination in cancer cells, the role of Dub3 in this process, and its potential use as a treatment target.</p>","PeriodicalId":9576,"journal":{"name":"Cancer cell & microenvironment","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer cell & microenvironment","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metastasis accounts for a majority of cancer death. One key feature during metastasis is epithelial-mesenchymal transition (EMT), which is regulated by transcription factors such as Snail and Twist. In non-malignant cells, Snail has a short half-life and is degraded via ubiquitination, but its stability is increased in cancer cell. However, the mechanism by which Snail escapes ubiquitination and degradation remains unknown. Recently, we found that Dub3 is a deubiquinase of Snail. Most importantly, we determined that Dub3 responded to extracellular signals such as IL-6, and that the resultant signaling prevented Snail degradation, and promoted cancer growth, invasion, and migration. In this highlight, we present a concise picture of how the transcription factor Snail is regulated by ubiquitination in cancer cells, the role of Dub3 in this process, and its potential use as a treatment target.

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蜗牛的调控:在泛素边缘上。
转移是癌症死亡的主要原因。转移过程中的一个关键特征是上皮-间质转化(EMT),这是由转录因子如Snail和Twist调节的。在非恶性细胞中,蜗牛的半衰期短,可通过泛素化降解,但在癌细胞中其稳定性增加。然而,蜗牛逃脱泛素化和降解的机制尚不清楚。最近,我们发现Dub3是蜗牛的一种去泛素酶。最重要的是,我们确定Dub3对细胞外信号如IL-6有反应,由此产生的信号阻止了Snail降解,并促进了癌症的生长、侵袭和迁移。在这篇重点文章中,我们简要介绍了癌细胞中转录因子Snail是如何被泛素化调节的,Dub3在这一过程中的作用,以及它作为治疗靶点的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Monoamine oxidase A (MAO-A) in cancer progression and metastasis Cellular Homeostasis or Tumorigenesis: USP7 Playing the Double Agent Research Highlight: Metastatic Malignant Thymoma to the Abdomen Scaling up to study brca2: the zeppelin zebrafish mutant reveals a role for brca2 in embryonic development of kidney mesoderm. Cryptotanshinone suppresses cell proliferation and induces apoptosis in renal cell carcinoma as an STAT3 inhibitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1