Cellular Homeostasis or Tumorigenesis: USP7 Playing the Double Agent

M. Ghosh, Bhaskar Basu, Gouranga Saha, Shreyasee Ghatak Choudhury
{"title":"Cellular Homeostasis or Tumorigenesis: USP7 Playing the Double Agent","authors":"M. Ghosh, Bhaskar Basu, Gouranga Saha, Shreyasee Ghatak Choudhury","doi":"10.14800/CCM.1624","DOIUrl":null,"url":null,"abstract":"The ubiquitin specific protease USP7/HAUSP is a major deubiquitinase that acts upon a wide spectrum of substrate proteins. Deubiquitination by USP7 generally leads to stabilization of substrates and their rescue from proteasomal degradation, but can also lead to alteration in their intracellular localization and activity. On the basis of its substrate proteins, USP7 has been shown to regulate processes involved in both the maintenance of homeostasis and the promotion of tumorigenesis. USP7, so far does not seem to be a dedicated regulator for either of these cellular phenomena, instead the relative abundance of a particular set of substrates over another being the factor that decides towards which phenomena it will be monopolized. The onset of cancer unfortunately creates an abundance of pro-oncogenic substrates, and this leads to a drastic monopolization of USP7 function towards the enhancement of further pro-oncogenic signaling.","PeriodicalId":9576,"journal":{"name":"Cancer cell & microenvironment","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer cell & microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/CCM.1624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The ubiquitin specific protease USP7/HAUSP is a major deubiquitinase that acts upon a wide spectrum of substrate proteins. Deubiquitination by USP7 generally leads to stabilization of substrates and their rescue from proteasomal degradation, but can also lead to alteration in their intracellular localization and activity. On the basis of its substrate proteins, USP7 has been shown to regulate processes involved in both the maintenance of homeostasis and the promotion of tumorigenesis. USP7, so far does not seem to be a dedicated regulator for either of these cellular phenomena, instead the relative abundance of a particular set of substrates over another being the factor that decides towards which phenomena it will be monopolized. The onset of cancer unfortunately creates an abundance of pro-oncogenic substrates, and this leads to a drastic monopolization of USP7 function towards the enhancement of further pro-oncogenic signaling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞内稳态或肿瘤发生:USP7扮演双重代理人
泛素特异性蛋白酶USP7/HAUSP是一种主要的去泛素酶,作用于广泛的底物蛋白。USP7的去泛素化通常会导致底物的稳定和蛋白酶体降解,但也会导致其细胞内定位和活性的改变。在其底物蛋白的基础上,USP7已被证明调节涉及维持体内平衡和促进肿瘤发生的过程。到目前为止,USP7似乎并不是这两种细胞现象的专门调节器,相反,一组特定底物相对于另一组底物的相对丰度是决定它将垄断哪种现象的因素。不幸的是,癌症的发生产生了大量的促癌底物,这导致USP7功能的急剧垄断,从而进一步增强促癌信号传导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Monoamine oxidase A (MAO-A) in cancer progression and metastasis Cellular Homeostasis or Tumorigenesis: USP7 Playing the Double Agent Research Highlight: Metastatic Malignant Thymoma to the Abdomen Scaling up to study brca2: the zeppelin zebrafish mutant reveals a role for brca2 in embryonic development of kidney mesoderm. Cryptotanshinone suppresses cell proliferation and induces apoptosis in renal cell carcinoma as an STAT3 inhibitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1