Novel PCR Assays for the Detection of Biological Agents Responsible for Wheat Rust Diseases: Puccinia triticina and Puccinia striiformis f. sp. tritici.
Adam Kuzdraliński, Anna Kot, Hubert Szczerba, Agnieszka Ostrowska, Michał Nowak, Marta Muszyńska, Michał Lechowski, Paweł Muzyka
{"title":"Novel PCR Assays for the Detection of Biological Agents Responsible for Wheat Rust Diseases: Puccinia triticina and Puccinia striiformis f. sp. tritici.","authors":"Adam Kuzdraliński, Anna Kot, Hubert Szczerba, Agnieszka Ostrowska, Michał Nowak, Marta Muszyńska, Michał Lechowski, Paweł Muzyka","doi":"10.1159/000481799","DOIUrl":null,"url":null,"abstract":"<p><p>The species Puccinia triticina (Pt) and Puccinia striiformis f. sp. tritici (Pst) are devastating cereal pathogens that cause leaf and stripe rust diseases. We developed PCR assays for the species-specific detection of Pt and Pst, 2 biological agents that cause wheat rust disease. For each pathogen, we validated 3 primer sets that target the second largest subunits of the RNA polymerase II (rpb2) and β-tubulin 1 (tub1) genes. The specificities of the primers were verified using naturally infected plant materials with visual symptoms of disease. All primer sets amplified a single DNA fragment of the expected length. The primer sets LidPr15/16, LidPr1/2, and LidPs13/14 were able to detect small amounts of pure fungal DNA with sensitivities of 0.1, 1, and 10 pg/μL, respectively. A sufficient detection limit (1 pg/μL to 5 ng/μL) was observed for all assays when the sensitivity test was performed with host plant DNA. The study also evaluated the simultaneous detection of both rust pathogens, and the multiplex PCR assay generated amplicons of 240 and 144 bp in length for Pts (LidPs9/10) and Pt (LidPr1/2), respectively.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":"27 5","pages":"299-305"},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000481799","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000481799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2
Abstract
The species Puccinia triticina (Pt) and Puccinia striiformis f. sp. tritici (Pst) are devastating cereal pathogens that cause leaf and stripe rust diseases. We developed PCR assays for the species-specific detection of Pt and Pst, 2 biological agents that cause wheat rust disease. For each pathogen, we validated 3 primer sets that target the second largest subunits of the RNA polymerase II (rpb2) and β-tubulin 1 (tub1) genes. The specificities of the primers were verified using naturally infected plant materials with visual symptoms of disease. All primer sets amplified a single DNA fragment of the expected length. The primer sets LidPr15/16, LidPr1/2, and LidPs13/14 were able to detect small amounts of pure fungal DNA with sensitivities of 0.1, 1, and 10 pg/μL, respectively. A sufficient detection limit (1 pg/μL to 5 ng/μL) was observed for all assays when the sensitivity test was performed with host plant DNA. The study also evaluated the simultaneous detection of both rust pathogens, and the multiplex PCR assay generated amplicons of 240 and 144 bp in length for Pts (LidPs9/10) and Pt (LidPr1/2), respectively.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.