The Membrane Attack Complex/Perforin Superfamily.

IF 1.2 Q2 Biochemistry, Genetics and Molecular Biology Journal of Molecular Microbiology and Biotechnology Pub Date : 2017-01-01 Epub Date: 2017-11-17 DOI:10.1159/000481286
Gabriel Moreno-Hagelsieb, Bennett Vitug, Arturo Medrano-Soto, Milton H Saier
{"title":"The Membrane Attack Complex/Perforin Superfamily.","authors":"Gabriel Moreno-Hagelsieb,&nbsp;Bennett Vitug,&nbsp;Arturo Medrano-Soto,&nbsp;Milton H Saier","doi":"10.1159/000481286","DOIUrl":null,"url":null,"abstract":"<p><p>The membrane attack complex/perforin (MACPF) superfamily consists of a diverse group of proteins involved in bacterial pathogenesis and sporulation as well as eukaryotic immunity, embryonic development, neural migration and fruiting body formation. The present work shows that the evolutionary relationships between the members of the superfamily, previously suggested by comparison of their tertiary structures, can also be supported by analyses of their primary structures. The superfamily includes the MACPF family (TC 1.C.39), the cholesterol-dependent cytolysin (CDC) family (TC 1.C.12.1 and 1.C.12.2) and the pleurotolysin pore-forming (pleurotolysin B) family (TC 1.C.97.1), as revealed by expansion of each family by comparison against a large protein database, and by the comparisons of their hidden Markov models. Clustering analyses demonstrated grouping of the CDC homologues separately from the 12 MACPF subfamilies, which also grouped separately from the pleurotolysin B family. Members of the MACPF superfamily revealed a remarkably diverse range of proteins spanning eukaryotic, bacterial, and archaeal taxonomic domains, with notable variations in protein domain architectures. Our strategy should also be helpful in putting together other highly divergent protein families.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":"27 4","pages":"252-267"},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000481286","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000481286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 25

Abstract

The membrane attack complex/perforin (MACPF) superfamily consists of a diverse group of proteins involved in bacterial pathogenesis and sporulation as well as eukaryotic immunity, embryonic development, neural migration and fruiting body formation. The present work shows that the evolutionary relationships between the members of the superfamily, previously suggested by comparison of their tertiary structures, can also be supported by analyses of their primary structures. The superfamily includes the MACPF family (TC 1.C.39), the cholesterol-dependent cytolysin (CDC) family (TC 1.C.12.1 and 1.C.12.2) and the pleurotolysin pore-forming (pleurotolysin B) family (TC 1.C.97.1), as revealed by expansion of each family by comparison against a large protein database, and by the comparisons of their hidden Markov models. Clustering analyses demonstrated grouping of the CDC homologues separately from the 12 MACPF subfamilies, which also grouped separately from the pleurotolysin B family. Members of the MACPF superfamily revealed a remarkably diverse range of proteins spanning eukaryotic, bacterial, and archaeal taxonomic domains, with notable variations in protein domain architectures. Our strategy should also be helpful in putting together other highly divergent protein families.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膜攻击复合物/穿孔素超家族。
膜攻击复合体/穿孔素(MACPF)超家族由一组不同的蛋白质组成,这些蛋白质参与细菌的发病和孢子形成,以及真核免疫、胚胎发育、神经迁移和子实体形成。目前的工作表明,超家族成员之间的进化关系,以前通过比较它们的三级结构提出的,也可以通过分析它们的一级结构来支持。超家族包括MACPF家族(TC 1.C.39),胆固醇依赖性细胞溶血素(CDC)家族(TC 1.C.12.1和1.C.12.2)和胸膜溶血素(胸膜溶血素B)家族(TC 1.C.97.1),通过与大型蛋白质数据库的比较以及它们的隐马尔可夫模型的比较,每个家族的扩展揭示了这一点。聚类分析表明CDC同源物与12个MACPF亚家族分开分组,MACPF亚家族也与胸膜溶血素B家族分开分组。MACPF超家族的成员揭示了跨越真核生物、细菌和古细菌分类结构域的蛋白质的显著多样性,在蛋白质结构域结构上存在显著差异。我们的策略也应该有助于将其他高度分化的蛋白质家族组合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Microbiology and Biotechnology
Journal of Molecular Microbiology and Biotechnology 生物-生物工程与应用微生物
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.
期刊最新文献
Contents Front & Back Matter The Life Cycle of Dictyostelium discoideum Is Accelerated via MAP Kinase Cascade by a Culture Extract Produced by a Synthetic Microbial Consortium A Riboflavin Transporter in Bdellovibrio exovorous JSS Front & Back Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1