Generating Quantitative Cell Identity Labels with Marker Enrichment Modeling (MEM)

Q1 Health Professions Current Protocols in Cytometry Pub Date : 2018-01-18 DOI:10.1002/cpcy.34
Kirsten E. Diggins, Jocelyn S. Gandelman, Caroline E. Roe, Jonathan M. Irish
{"title":"Generating Quantitative Cell Identity Labels with Marker Enrichment Modeling (MEM)","authors":"Kirsten E. Diggins,&nbsp;Jocelyn S. Gandelman,&nbsp;Caroline E. Roe,&nbsp;Jonathan M. Irish","doi":"10.1002/cpcy.34","DOIUrl":null,"url":null,"abstract":"<p>Multiplexed single-cell experimental techniques like mass cytometry measure 40 or more features and enable deep characterization of well-known and novel cell populations. However, traditional data analysis techniques rely extensively on human experts or prior knowledge, and novel machine learning algorithms may generate unexpected population groupings. Marker enrichment modeling (MEM) creates quantitative identity labels based on features enriched in a population relative to a reference. While developed for cell type analysis, MEM labels can be generated for a wide range of multidimensional data types, and MEM works effectively with output from expert analysis and diverse machine learning algorithms. MEM is implemented as an R package and includes three steps: (1) calculation of MEM values that quantify each feature's relative enrichment in the population, (2) reporting of MEM labels as a heatmap or as a text label, and (3) quantification of MEM label similarity between populations. The protocols here show MEM analysis using datasets from immunology and oncology. These MEM implementations provide a way to characterize population identity and novelty in the context of computational and expert analyses. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":11020,"journal":{"name":"Current Protocols in Cytometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcy.34","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cytometry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcy.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 20

Abstract

Multiplexed single-cell experimental techniques like mass cytometry measure 40 or more features and enable deep characterization of well-known and novel cell populations. However, traditional data analysis techniques rely extensively on human experts or prior knowledge, and novel machine learning algorithms may generate unexpected population groupings. Marker enrichment modeling (MEM) creates quantitative identity labels based on features enriched in a population relative to a reference. While developed for cell type analysis, MEM labels can be generated for a wide range of multidimensional data types, and MEM works effectively with output from expert analysis and diverse machine learning algorithms. MEM is implemented as an R package and includes three steps: (1) calculation of MEM values that quantify each feature's relative enrichment in the population, (2) reporting of MEM labels as a heatmap or as a text label, and (3) quantification of MEM label similarity between populations. The protocols here show MEM analysis using datasets from immunology and oncology. These MEM implementations provide a way to characterize population identity and novelty in the context of computational and expert analyses. © 2018 by John Wiley & Sons, Inc.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用标记富集模型(Marker Enrichment Modeling, MEM)生成定量细胞身份标签。
多路单细胞实验技术,如质量细胞术,可以测量40个或更多的特征,并能够深入表征已知的和新的细胞群。然而,传统的数据分析技术广泛依赖于人类专家或先验知识,而新的机器学习算法可能会产生意想不到的人口分组。标记富集建模(Marker enrichment modeling, MEM)基于种群中相对于参考的富集特征创建定量的身份标签。虽然是为细胞类型分析而开发的,但MEM标签可以为广泛的多维数据类型生成,并且MEM可以有效地与专家分析和各种机器学习算法的输出一起工作。MEM作为一个R包实现,包括三个步骤:(1)计算MEM值,量化每个特征在种群中的相对富集程度;(2)将MEM标签报告为热图或文本标签;(3)量化种群之间的MEM标签相似性。这里的方案显示了使用免疫学和肿瘤学数据集的MEM分析。这些MEM实现提供了一种在计算和专家分析的背景下表征群体身份和新颖性的方法。©2018 by John Wiley & Sons, Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Protocols in Cytometry
Current Protocols in Cytometry Health Professions-Medical Laboratory Technology
自引率
0.00%
发文量
0
期刊介绍: Published in affiliation with the International Society for Advancement of Cytometry, Current Protocols in Cytometry is a "best practices" collection that distills and organizes the absolute latest techniques from the top cytometry labs and specialists worldwide. It is the most complete set of peer-reviewed protocols for flow and image cytometry available.
期刊最新文献
Issue Information Detection and Sorting of Extracellular Vesicles and Viruses Using nanoFACS Live Imaging of the Lung Small Particle Fluorescence and Light Scatter Calibration Using FCMPASS Software. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1