{"title":"Remodeling of the arterial wall: Response to restoration of normal blood flow after flow reduction.","authors":"Kozaburo Hayashi, Daichi Kakoi, Akihisa Makino","doi":"10.3233/BIR-17146","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although many studies have shown that arteries change diameter in response to chronic change in blood flow (BF), keeping wall shear stress (WSS) at physiologically normal levels, relatively little is known about the effects of flow restoration after flow reduction and also the role of vascular smooth muscle (VSM) during such a remodeling process.</p><p><strong>Objective: </strong>To elucidate the biomechanical responses of the arterial wall to the restoration of normal BF after flow reduction and compare the results with our previous results observed in response to decreased BF alone.</p><p><strong>Methods: </strong>Carotid artery BF in the Wistar rat was decreased by ligation and then restored to normal levels by release of the ligation. The effects of BF changes on the biomechanical properties of the carotid arterial wall were determined from measurements of diameters and pressures of excised artery segments.</p><p><strong>Results: </strong>During BF reduction and restoration, WSS was maintained at physiological levels by changes in the internal diameter. No significant changes in the incremental elastic modulus were found in response to changes in BF. VSM tone was significantly enhanced during the changes in BF.</p><p><strong>Conclusions: </strong>Arteries change diameters in response to BF reduction and also flow restoration to normal after flow reduction, keeping WSS at physiologically normal levels. The lack of changes in vascular elasticity suggests that there were no significant changes in major wall constituents, such as elastin and collagen. VSM may play the dominant role in observed arterial remodeling and adaptation.</p>","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"54 2-4","pages":"95-108"},"PeriodicalIF":1.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BIR-17146","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BIR-17146","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
Background: Although many studies have shown that arteries change diameter in response to chronic change in blood flow (BF), keeping wall shear stress (WSS) at physiologically normal levels, relatively little is known about the effects of flow restoration after flow reduction and also the role of vascular smooth muscle (VSM) during such a remodeling process.
Objective: To elucidate the biomechanical responses of the arterial wall to the restoration of normal BF after flow reduction and compare the results with our previous results observed in response to decreased BF alone.
Methods: Carotid artery BF in the Wistar rat was decreased by ligation and then restored to normal levels by release of the ligation. The effects of BF changes on the biomechanical properties of the carotid arterial wall were determined from measurements of diameters and pressures of excised artery segments.
Results: During BF reduction and restoration, WSS was maintained at physiological levels by changes in the internal diameter. No significant changes in the incremental elastic modulus were found in response to changes in BF. VSM tone was significantly enhanced during the changes in BF.
Conclusions: Arteries change diameters in response to BF reduction and also flow restoration to normal after flow reduction, keeping WSS at physiologically normal levels. The lack of changes in vascular elasticity suggests that there were no significant changes in major wall constituents, such as elastin and collagen. VSM may play the dominant role in observed arterial remodeling and adaptation.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.