{"title":"Ascending the PEAK1 toward targeting TGFβ during cancer progression: Recent advances and future perspectives.","authors":"Farhana Runa, Yvess Adamian, Jonathan A Kelber","doi":"10.14800/ccm.1162","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is the second leading cause of death in the United States. Mortality in patients with solid, epithelial-derived tumors strongly correlates with disease stage and the systemic metastatic load. In such cancers, notable morphological and molecular changes have been attributed to cells as they pass through a continuum of epithelial-mesenchymal transition (EMT) states and many of these changes are essential for metastasis. While cancer metastasis is a complex cascade that is regulated by cell-autonomous and microenvironmental influences, it is well-accepted that understanding and controlling metastatic disease is a viable method for increasing patient survival. In the past 5 years, the novel non-receptor tyrosine kinase PEAK1 has surfaced as a central regulator of tumor progression and metastasis in the context of solid, epithelial cancers. Here, we review this literature with a special focus on our recent work demonstrating that PEAK1 mediates non-canonical pro-tumorigenic TGFβ signaling and is an intracellular control point between tumor cells and their extracellular microenvironment. We conclude with a brief discussion of potential applications derived from our current understanding of PEAK1 biology.</p>","PeriodicalId":9576,"journal":{"name":"Cancer cell & microenvironment","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/22/c1/nihms912436.PMC5790177.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer cell & microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/ccm.1162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is the second leading cause of death in the United States. Mortality in patients with solid, epithelial-derived tumors strongly correlates with disease stage and the systemic metastatic load. In such cancers, notable morphological and molecular changes have been attributed to cells as they pass through a continuum of epithelial-mesenchymal transition (EMT) states and many of these changes are essential for metastasis. While cancer metastasis is a complex cascade that is regulated by cell-autonomous and microenvironmental influences, it is well-accepted that understanding and controlling metastatic disease is a viable method for increasing patient survival. In the past 5 years, the novel non-receptor tyrosine kinase PEAK1 has surfaced as a central regulator of tumor progression and metastasis in the context of solid, epithelial cancers. Here, we review this literature with a special focus on our recent work demonstrating that PEAK1 mediates non-canonical pro-tumorigenic TGFβ signaling and is an intracellular control point between tumor cells and their extracellular microenvironment. We conclude with a brief discussion of potential applications derived from our current understanding of PEAK1 biology.