Dalia M Jamil, Ahmed K Al-Okbi, Shaimaa B Al-Baghdadi, Ahmed A Al-Amiery, Abdulhadi Kadhim, Tayser Sumer Gaaz, Abdul Amir H Kadhum, Abu Bakar Mohamad
{"title":"Experimental and theoretical studies of Schiff bases as corrosion inhibitors.","authors":"Dalia M Jamil, Ahmed K Al-Okbi, Shaimaa B Al-Baghdadi, Ahmed A Al-Amiery, Abdulhadi Kadhim, Tayser Sumer Gaaz, Abdul Amir H Kadhum, Abu Bakar Mohamad","doi":"10.1186/s13065-018-0376-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Relatively inexpensive, stable Schiff bases, namely 3-((4-hydroxybenzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ3) and 3-((4-(dimethylamino)benzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ4), were employed as highly efficient inhibitors of mild steel corrosion by corrosive acid.</p><p><strong>Findings: </strong>The inhibition efficiencies were estimated based on weight loss method. Moreover, scanning electron microscopy was used to investigate the inhibition mechanism. The synthesized Schiff bases were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and micro-elemental analysis. The inhibition efficiency depends on three factors: the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight.</p><p><strong>Conclusions: </strong>Inhibition efficiencies of 96 and 92% were achieved with BZ4 and BZ3, respectively, at the maximum tested concentration. Density functional theory calculations of BZ3 and BZ4 were performed to compare the effects of hydroxyl and N,N-dimethylamino substituents on the inhibition efficiency, providing insight for designing new molecular structures that exhibit enhanced inhibition efficiencies.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0376-7","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0376-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 85
Abstract
Background: Relatively inexpensive, stable Schiff bases, namely 3-((4-hydroxybenzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ3) and 3-((4-(dimethylamino)benzylidene)amino)-2-methylquinazolin-4(3H)-one (BZ4), were employed as highly efficient inhibitors of mild steel corrosion by corrosive acid.
Findings: The inhibition efficiencies were estimated based on weight loss method. Moreover, scanning electron microscopy was used to investigate the inhibition mechanism. The synthesized Schiff bases were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and micro-elemental analysis. The inhibition efficiency depends on three factors: the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight.
Conclusions: Inhibition efficiencies of 96 and 92% were achieved with BZ4 and BZ3, respectively, at the maximum tested concentration. Density functional theory calculations of BZ3 and BZ4 were performed to compare the effects of hydroxyl and N,N-dimethylamino substituents on the inhibition efficiency, providing insight for designing new molecular structures that exhibit enhanced inhibition efficiencies.
期刊介绍:
BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research.
Sections:
-Analytical Chemistry
-Organic Chemistry
-Environmental and Energy Chemistry
-Agricultural and Food Chemistry
-Inorganic Chemistry
-Medicinal Chemistry
-Physical Chemistry
-Materials and Macromolecular Chemistry
-Green and Sustainable Chemistry