Surface thiolation of silicon for antifouling application.

Q1 Chemistry Chemistry Central Journal Pub Date : 2018-02-07 DOI:10.1186/s13065-018-0385-6
Xiaoning Zhang, Pei Gao, Valerie Hollimon, DaShan Brodus, Arion Johnson, Hongmei Hu
{"title":"Surface thiolation of silicon for antifouling application.","authors":"Xiaoning Zhang,&nbsp;Pei Gao,&nbsp;Valerie Hollimon,&nbsp;DaShan Brodus,&nbsp;Arion Johnson,&nbsp;Hongmei Hu","doi":"10.1186/s13065-018-0385-6","DOIUrl":null,"url":null,"abstract":"<p><p>Thiol groups grafted silicon surface was prepared as previously described. 1H,1H,2H,2H-perfluorodecanethiol (PFDT) molecules were then immobilized on such a surface through disulfide bonds formation. To investigate the contribution of PFDT coating to antifouling, the adhesion behaviors of Botryococcus braunii (B. braunii) and Escherichia coli (E. coli) were studied through biofouling assays in the laboratory. The representative microscope images suggest reduced B. braunii and E. coli accumulation densities on PFDT integrated silicon substrate. However, the antifouling performance of PFDT integrated silicon substrate decreased over time. By incubating the aged substrate in 10 mM TCEP·HCl solution for 1 h, the fouled PFDT coating could be removed as the disulfide bonds were cleaved, resulting in reduced absorption of algal cells and exposure of non-fouled silicon substrate surface. Our results indicate that the thiol-terminated substrate can be potentially useful for restoring the fouled surface, as well as maximizing the effective usage of the substrate.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0385-6","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0385-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 6

Abstract

Thiol groups grafted silicon surface was prepared as previously described. 1H,1H,2H,2H-perfluorodecanethiol (PFDT) molecules were then immobilized on such a surface through disulfide bonds formation. To investigate the contribution of PFDT coating to antifouling, the adhesion behaviors of Botryococcus braunii (B. braunii) and Escherichia coli (E. coli) were studied through biofouling assays in the laboratory. The representative microscope images suggest reduced B. braunii and E. coli accumulation densities on PFDT integrated silicon substrate. However, the antifouling performance of PFDT integrated silicon substrate decreased over time. By incubating the aged substrate in 10 mM TCEP·HCl solution for 1 h, the fouled PFDT coating could be removed as the disulfide bonds were cleaved, resulting in reduced absorption of algal cells and exposure of non-fouled silicon substrate surface. Our results indicate that the thiol-terminated substrate can be potentially useful for restoring the fouled surface, as well as maximizing the effective usage of the substrate.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于防污应用的硅表面硫硫化。
巯基接枝硅表面的制备方法如上所述。然后通过形成二硫键将1H,1H,2H,2H-全氟十二硫醇(PFDT)分子固定在该表面上。为了研究PFDT涂层对防污的贡献,通过实验室生物沾污试验研究了布劳尼芽孢杆菌(B. braunii)和大肠杆菌(E. coli)的粘附行为。有代表性的显微镜图像显示,在PFDT集成硅衬底上,布朗氏杆菌和大肠杆菌的聚集密度降低。然而,随着时间的推移,PFDT集成硅衬底的防污性能下降。老化的衬底在10 mM TCEP·HCl溶液中孵育1小时,由于二硫键的断裂,污染的PFDT涂层可以被去除,从而减少了藻类细胞的吸收,暴露了未污染的硅衬底表面。我们的研究结果表明,巯基端底物可以潜在地用于修复污染表面,以及最大限度地有效利用底物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry Central Journal
Chemistry Central Journal 化学-化学综合
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
3.5 months
期刊介绍: BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research. Sections: -Analytical Chemistry -Organic Chemistry -Environmental and Energy Chemistry -Agricultural and Food Chemistry -Inorganic Chemistry -Medicinal Chemistry -Physical Chemistry -Materials and Macromolecular Chemistry -Green and Sustainable Chemistry
期刊最新文献
Design, synthesis and biological potential of heterocyclic benzoxazole scaffolds as promising antimicrobial and anticancer agents. Regio and stereoselective synthesis of anticancer spirooxindolopyrrolidine embedded piperidone heterocyclic hybrids derived from one-pot cascade protocol. Augmentation of hepatoprotective potential of Aegle marmelos in combination with piperine in carbon tetrachloride model in wistar rats. Polyaniline/palladium nanohybrids for moisture and hydrogen detection. Benzoxazole derivatives: design, synthesis and biological evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1