CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells

Q2 Biochemistry, Genetics and Molecular Biology Current Protocols in Stem Cell Biology Pub Date : 2018-02-28 DOI:10.1002/cpsc.46
Joseph C. Giacalone, Tasneem P. Sharma, Erin R. Burnight, John F. Fingert, Robert F. Mullins, Edwin M. Stone, Budd A. Tucker
{"title":"CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells","authors":"Joseph C. Giacalone,&nbsp;Tasneem P. Sharma,&nbsp;Erin R. Burnight,&nbsp;John F. Fingert,&nbsp;Robert F. Mullins,&nbsp;Edwin M. Stone,&nbsp;Budd A. Tucker","doi":"10.1002/cpsc.46","DOIUrl":null,"url":null,"abstract":"<p>Human induced pluripotent stem cells (hiPSCs) are the ideal cell source for autologous cell replacement. However, for patients with Mendelian diseases, genetic correction of the original disease-causing mutation is likely required prior to cellular differentiation and transplantation. The emergence of the CRISPR-Cas9 system has revolutionized the field of genome editing. By introducing inexpensive reagents that are relatively straightforward to design and validate, it is now possible to correct genetic variants or insert desired sequences at any location within the genome. CRISPR-based genome editing of patient-specific iPSCs shows great promise for future autologous cell replacement therapies. One caveat, however, is that hiPSCs are notoriously difficult to transfect, and optimized experimental design considerations are often necessary. This unit describes design strategies and methods for efficient CRISPR-based genome editing of patient- specific iPSCs. Additionally, it details a flexible approach that utilizes positive selection to generate clones with a desired genomic modification, Cre-<i>lox</i> recombination to remove the integrated selection cassette, and negative selection to eliminate residual hiPSCs with intact selection cassettes. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":53703,"journal":{"name":"Current Protocols in Stem Cell Biology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpsc.46","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Stem Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 24

Abstract

Human induced pluripotent stem cells (hiPSCs) are the ideal cell source for autologous cell replacement. However, for patients with Mendelian diseases, genetic correction of the original disease-causing mutation is likely required prior to cellular differentiation and transplantation. The emergence of the CRISPR-Cas9 system has revolutionized the field of genome editing. By introducing inexpensive reagents that are relatively straightforward to design and validate, it is now possible to correct genetic variants or insert desired sequences at any location within the genome. CRISPR-based genome editing of patient-specific iPSCs shows great promise for future autologous cell replacement therapies. One caveat, however, is that hiPSCs are notoriously difficult to transfect, and optimized experimental design considerations are often necessary. This unit describes design strategies and methods for efficient CRISPR-based genome editing of patient- specific iPSCs. Additionally, it details a flexible approach that utilizes positive selection to generate clones with a desired genomic modification, Cre-lox recombination to remove the integrated selection cassette, and negative selection to eliminate residual hiPSCs with intact selection cassettes. © 2018 by John Wiley & Sons, Inc.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于crispr - cas9的人诱导多能干细胞基因组编辑
人诱导多能干细胞(hiPSCs)是自体细胞替代的理想细胞来源。然而,对于孟德尔疾病患者,在细胞分化和移植之前,可能需要对原始致病突变进行基因校正。CRISPR-Cas9系统的出现彻底改变了基因组编辑领域。通过引入设计和验证相对简单的廉价试剂,现在有可能纠正遗传变异或在基因组内的任何位置插入所需的序列。基于crispr的患者特异性iPSCs基因组编辑显示出未来自体细胞替代疗法的巨大前景。然而,需要注意的是,hipsc是出了名的难以转染的,优化的实验设计考虑通常是必要的。本单元描述了高效的基于crispr的患者特异性iPSCs基因组编辑的设计策略和方法。此外,它还详细介绍了一种灵活的方法,利用正选择生成具有所需基因组修饰的克隆,Cre-lox重组去除集成选择盒,负选择去除完整选择盒中残留的hipsc。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Protocols in Stem Cell Biology
Current Protocols in Stem Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
0.00%
发文量
0
期刊介绍: Published in affiliation with the International Society for Stem Cell Research (ISSCR), Current Protocols in Stem Cell Biology (CPSC) covers the most fundamental protocols and methods in the rapidly growing field of stem cell biology. Updated monthly, CPSC will constantly evolve with thelatest developments and breakthroughs in the field. Drawing on the expertise of leading researchers from around the world, Current Protocols in Stem Cell Biology includes methods and insights that will enhance the progress of global research.
期刊最新文献
Issue Information Differentiation Protocol for 3D Retinal Organoids, Immunostaining and Signal Quantitation Scaled Isolation of Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles Cell Banking of hiPSCs: A Practical Guide to Cryopreservation and Quality Control in Basic Research Advancing Stem Cell Technologies and Applications: A Special Collection from the PluriCore Network in the German Stem Cell Network (GSCN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1