Mushtaq Ahmad, Zahida Perveen, Adailton J Bortoluzzi, Shahid Hameed, Muhammad R Shah, Muhammad Tariq, Ghias Ud Din, Muhammad T Jan, Muhammad Siddique, Muhammad Anwar
{"title":"Synthesis and characterization of novel iminobenzoates with terminal pyrazine moieties.","authors":"Mushtaq Ahmad, Zahida Perveen, Adailton J Bortoluzzi, Shahid Hameed, Muhammad R Shah, Muhammad Tariq, Ghias Ud Din, Muhammad T Jan, Muhammad Siddique, Muhammad Anwar","doi":"10.1186/s13065-018-0396-3","DOIUrl":null,"url":null,"abstract":"<p><p>Apart from its numerous biological activities like antidiabetic, anti-inflammatory, antimicrobial, pyrazine moiety plays an important role in luminescent materials. Its role in luminescent materials is due to its highly electron deficient nature specially when it is in the centre along the mainstay of extended π-conjugated systems. Similarly, new liquid crystalline compounds are being made constantly where the central benzoaromatic moiety is being replaced with the heterocycles including pyrazine due to their more variable nature. Pyrazine derivatives can also be used in supramolecular assemblies due to their efficient hydrogen bonding, protonation and complexation properties. Keeping in view the enormous applications of pyrazine derivatives we planned to synthesize new extended iminobenzoates with pyrazine moieties at the terminal positions. The planned iminobenzoates with terminal pyrazine moieties were prepared following standard procedures. The pyrazine-2-carbohydrazide (1) and 5-methylpyrazine-2-carbohydrazide (2) were prepared by refluxing their methyl esters with hydrazine hydrate in methanol. The esters (3a-3f) were synthesized by reacting 4-hydroxybenzaldehyde with differently substituted acid halides in tetrahydrofuran in the presence of triethyl amine. The target compounds that is, iminobenzoates with the pyrazine moieties at terminal positions (4a-4l), were obtained in good to excellent yields by the reaction of the hydrazides with the esters at reflux. The synthesized compounds were fully characterized using different spectroanalytical techniques including FT-IR, NMR, Mass, elemental analysis and single crystal X-ray diffraction analysis. The paper describes the synthesis of novel iminobenzoates following easy methods while utilizing commercially available starting materials. The synthesized iminobenzoates may possibly be converted to compounds with luminescent and liquid crystalline properties after making suitable changes to the pyrazine moieties. Properly substituted pyrazines on both sides, capable of further suitable extensions, may result in compounds with such properties.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0396-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Apart from its numerous biological activities like antidiabetic, anti-inflammatory, antimicrobial, pyrazine moiety plays an important role in luminescent materials. Its role in luminescent materials is due to its highly electron deficient nature specially when it is in the centre along the mainstay of extended π-conjugated systems. Similarly, new liquid crystalline compounds are being made constantly where the central benzoaromatic moiety is being replaced with the heterocycles including pyrazine due to their more variable nature. Pyrazine derivatives can also be used in supramolecular assemblies due to their efficient hydrogen bonding, protonation and complexation properties. Keeping in view the enormous applications of pyrazine derivatives we planned to synthesize new extended iminobenzoates with pyrazine moieties at the terminal positions. The planned iminobenzoates with terminal pyrazine moieties were prepared following standard procedures. The pyrazine-2-carbohydrazide (1) and 5-methylpyrazine-2-carbohydrazide (2) were prepared by refluxing their methyl esters with hydrazine hydrate in methanol. The esters (3a-3f) were synthesized by reacting 4-hydroxybenzaldehyde with differently substituted acid halides in tetrahydrofuran in the presence of triethyl amine. The target compounds that is, iminobenzoates with the pyrazine moieties at terminal positions (4a-4l), were obtained in good to excellent yields by the reaction of the hydrazides with the esters at reflux. The synthesized compounds were fully characterized using different spectroanalytical techniques including FT-IR, NMR, Mass, elemental analysis and single crystal X-ray diffraction analysis. The paper describes the synthesis of novel iminobenzoates following easy methods while utilizing commercially available starting materials. The synthesized iminobenzoates may possibly be converted to compounds with luminescent and liquid crystalline properties after making suitable changes to the pyrazine moieties. Properly substituted pyrazines on both sides, capable of further suitable extensions, may result in compounds with such properties.
期刊介绍:
BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research.
Sections:
-Analytical Chemistry
-Organic Chemistry
-Environmental and Energy Chemistry
-Agricultural and Food Chemistry
-Inorganic Chemistry
-Medicinal Chemistry
-Physical Chemistry
-Materials and Macromolecular Chemistry
-Green and Sustainable Chemistry