Dose Finding for Drug Combination in Early Cancer Phase I Trials using Conditional Continual Reassessment Method.

Journal of biometrics & biostatistics Pub Date : 2017-01-01 Epub Date: 2017-11-27 DOI:10.4172/2155-6180.1000381
Márcio Augusto Diniz, Quanlin-Li, Mourad Tighiouart
{"title":"Dose Finding for Drug Combination in Early Cancer Phase I Trials using Conditional Continual Reassessment Method.","authors":"Márcio Augusto Diniz,&nbsp;Quanlin-Li,&nbsp;Mourad Tighiouart","doi":"10.4172/2155-6180.1000381","DOIUrl":null,"url":null,"abstract":"<p><p>We describe a dose escalation algorithm for drug combinations in cancer phase I clinical trials. Parametric models for describing the association between the doses and the probability of dose limiting toxicity are used assuming univariate monotonicity of the dose-toxicity relationship. Trial design proceeds using the continual reassessment method, where at each stage of the trial, we seek the dose of one agent with estimated probability of toxicity closest to a target probability of toxicity given the current dose of the other agent. A Bayes estimate of the maximum tolerated dose (MTD) curve is proposed at the conclusion of the trial for continuous doses or a set of MTDs is determined in the case of discrete dose levels. We evaluate design operating characteristics in terms of safety of the trial and percent of dose recommendation at dose combination neighborhoods around the true MTD under various model generated scenarios and misspecification. The method is further assessed for varying algorithms enrolling cohorts of two and three patients receiving different doses and compared to previous approaches such as escalation with overdose control and two-dimensional design.</p>","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":"8 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2155-6180.1000381","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6180.1000381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We describe a dose escalation algorithm for drug combinations in cancer phase I clinical trials. Parametric models for describing the association between the doses and the probability of dose limiting toxicity are used assuming univariate monotonicity of the dose-toxicity relationship. Trial design proceeds using the continual reassessment method, where at each stage of the trial, we seek the dose of one agent with estimated probability of toxicity closest to a target probability of toxicity given the current dose of the other agent. A Bayes estimate of the maximum tolerated dose (MTD) curve is proposed at the conclusion of the trial for continuous doses or a set of MTDs is determined in the case of discrete dose levels. We evaluate design operating characteristics in terms of safety of the trial and percent of dose recommendation at dose combination neighborhoods around the true MTD under various model generated scenarios and misspecification. The method is further assessed for varying algorithms enrolling cohorts of two and three patients receiving different doses and compared to previous approaches such as escalation with overdose control and two-dimensional design.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用条件连续重新评估方法寻找早期癌症I期临床试验中药物联合的剂量。
我们描述了癌症I期临床试验中药物组合的剂量递增算法。假设剂量-毒性关系的单变量单调性,使用参数模型来描述剂量和剂量限制毒性概率之间的关系。试验设计使用持续重新评估方法进行,在试验的每个阶段,我们寻求一种药物的剂量,其估计毒性概率最接近给定另一种药物当前剂量的目标毒性概率。对于连续剂量,在试验结束时提出最大耐受剂量(MTD)曲线的贝叶斯估计,对于离散剂量水平,则确定一组最大耐受剂量。我们根据试验的安全性和在各种模型生成情景和错误规范下,在真实MTD附近的剂量组合区域推荐剂量的百分比来评估设计操作特性。该方法进一步评估了不同的算法,纳入了接受不同剂量的2名和3名患者的队列,并与之前的方法(如过量控制的升级和二维设计)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROSPECTIVELY ESTIMATING THE AGE OF INITIATION OF E-CIGARETTES AMONG U.S. YOUTH: FINDINGS FROM THE POPULATION ASSESSMENT OF TOBACCO AND HEALTH (PATH) STUDY, 2013-2017. The Kumaraswamy-Rani Distribution and Its Applications Analytical Visual Methods to Describe Practice Patterns in a Newly Diagnosed Multiple Myeloma Non-Interventional Disease Registry Short Prognostic APP for Multiple Myeloma Sample Size Charts for Spearman and Kendall Coefficients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1