Automated Predictive Big Data Analytics Using Ontology Based Semantics.

Mustafa V Nural, Michael E Cotterell, Hao Peng, Rui Xie, Ping Ma, John A Miller
{"title":"Automated Predictive Big Data Analytics Using Ontology Based Semantics.","authors":"Mustafa V Nural, Michael E Cotterell, Hao Peng, Rui Xie, Ping Ma, John A Miller","doi":"10.29268/stbd.2015.2.2.4","DOIUrl":null,"url":null,"abstract":"<p><p>Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.</p>","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":"2 2","pages":"43-56"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898823/pdf/nihms886095.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of big data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29268/stbd.2015.2.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于本体的语义自动预测大数据分析。
大数据时代的预测分析正发挥着越来越重要的作用。与建模技术选择、估算程序(或算法)和高效执行相关的问题可能会带来重大挑战。例如,为大数据分析选择适当和最优的模型往往需要仔细调查和大量专业知识,而这些知识可能并不总是随时可用。在本文中,我们建议使用语义技术来帮助数据分析师和数据科学家选择适当的建模技术和构建特定的模型,并说明所选技术和模型的理由。为了正式描述建模技术、模型和结果,我们开发了分析本体(Analytics Ontology),它支持半自动模型选择的推理。SCALATION 框架目前支持 30 多种用于预测性大数据分析的建模技术,我们将其用作评估语义技术使用情况的试验平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear Programming and Its Application Techniques in Optimizing Portfolio Selection of a Firm A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data Integrating ROS and IoT in a Virtual Laboratory for Control System Engineering Dynamical System Analysis of a Lassa Fever Model with Varying Socioeconomic Classes Extended Gumbel Type-2 Distribution: Properties and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1