Optimization techniques have been used in this paper to obtain an optimal investment in a selected portfolio that gives maximum returns with minimal inputs based on the secondary data supplied by a particular firm that is examined. Sensitivity analysis is done to ascertain the robustness of the resulting model towards the changes in input parameters to determine a redundant constraint using linear programming. The challenge of determining the available funds and allocating each component of the portfolio to maximize returns and minimize inputs by portfolio holders and managers who are the major decision-makers in allocating their resources cannot be quantified. This optimization technique is used to obtain an optimal investment portfolio including financial risks of a firm with disposable of $15,000,000.00 invested in crude oil, mortgage securities, cash crop, certificate of deposit, fixed deposit, treasury bills, and construction loans. The model is a single-objective model that maximizes the return on the portfolio as the interests on the original data reduces by 5%; then, the return on investments also reduced by almost 15%, with the quantum of money on treasury bills and construction loans posing a significant reduction for the maximum return. The investment in the other options saw a slight decrease. Also, as the interest rates of the original data increase by 5%, the return on investments also grows by almost 17% while the quantum of money on the treasury bills and construction loans increases, and the quantum of money on the other options experienced a decrease except for mortgage securities which recorded a slight increase.
{"title":"Linear Programming and Its Application Techniques in Optimizing Portfolio Selection of a Firm","authors":"N. Oladejo, A. Abolarinwa, S. Salawu","doi":"10.1155/2020/8817909","DOIUrl":"https://doi.org/10.1155/2020/8817909","url":null,"abstract":"Optimization techniques have been used in this paper to obtain an optimal investment in a selected portfolio that gives maximum returns with minimal inputs based on the secondary data supplied by a particular firm that is examined. Sensitivity analysis is done to ascertain the robustness of the resulting model towards the changes in input parameters to determine a redundant constraint using linear programming. The challenge of determining the available funds and allocating each component of the portfolio to maximize returns and minimize inputs by portfolio holders and managers who are the major decision-makers in allocating their resources cannot be quantified. This optimization technique is used to obtain an optimal investment portfolio including financial risks of a firm with disposable of $15,000,000.00 invested in crude oil, mortgage securities, cash crop, certificate of deposit, fixed deposit, treasury bills, and construction loans. The model is a single-objective model that maximizes the return on the portfolio as the interests on the original data reduces by 5%; then, the return on investments also reduced by almost 15%, with the quantum of money on treasury bills and construction loans posing a significant reduction for the maximum return. The investment in the other options saw a slight decrease. Also, as the interest rates of the original data increase by 5%, the return on investments also grows by almost 17% while the quantum of money on the treasury bills and construction loans increases, and the quantum of money on the other options experienced a decrease except for mortgage securities which recorded a slight increase.","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81811917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-23DOI: 10.1186/s40537-020-00382-x
Joffrey L. Leevy, T. Khoshgoftaar
{"title":"A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data","authors":"Joffrey L. Leevy, T. Khoshgoftaar","doi":"10.1186/s40537-020-00382-x","DOIUrl":"https://doi.org/10.1186/s40537-020-00382-x","url":null,"abstract":"","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82050071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lassa fever is an animal-borne acute viral illness caused by Lassa virus. It poses a serious health challenge around the world today, especially in West African countries like Ghana, Benin, Guinea, Liberia, Mali, Sierra Leone, and Nigeria. In this work, we formulate a multiple-patch Lassa fever model, where each patch denotes a socioeconomic class (SEC). Some of the important epidemiological features such as basic reproduction number of the model were determined and analysed accordingly. We further investigated how varying SECs affect the transmission dynamics of Lassa fever. We analysed the required state at which each SEC is responsible in driving the Lassa fever disease outbreak. Sensitivity analyses were carried out to determine the importance of model parameters to the disease transmission and prevalence. We carried out numerical simulation to support our analytical results. Finally, we extend some of the results of the 2-patch model to the general - patch model.
{"title":"Dynamical System Analysis of a Lassa Fever Model with Varying Socioeconomic Classes","authors":"Ifeanyi Sunday Onah, O. C. Collins","doi":"10.1155/2020/2601706","DOIUrl":"https://doi.org/10.1155/2020/2601706","url":null,"abstract":"Lassa fever is an animal-borne acute viral illness caused by Lassa virus. It poses a serious health challenge around the world today, especially in West African countries like Ghana, Benin, Guinea, Liberia, Mali, Sierra Leone, and Nigeria. In this work, we formulate a multiple-patch Lassa fever model, where each patch denotes a socioeconomic class (SEC). Some of the important epidemiological features such as basic reproduction number of the model were determined and analysed accordingly. We further investigated how varying SECs affect the transmission dynamics of Lassa fever. We analysed the required state at which each SEC is responsible in driving the Lassa fever disease outbreak. Sensitivity analyses were carried out to determine the importance of model parameters to the disease transmission and prevalence. We carried out numerical simulation to support our analytical results. Finally, we extend some of the results of the 2-patch model to the general - patch model.","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90931952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article presents the implementation of a learning environment for the teaching of control systems. This environment integrates physical equipment and simulation, monitoring, and control through a network. A software platform based on ROS (Robotic Operating System) grants access to the system through intranet and Internet, facilitating the integration of new test equipment. The environment developed can be used in didactic experiences both inside and outside the classroom, enhancing the learning of four main study topics: modeling, analysis, parameter estimation, and controller design.
{"title":"Integrating ROS and IoT in a Virtual Laboratory for Control System Engineering","authors":"C. Urrea, J. Kern","doi":"10.1155/2020/8987150","DOIUrl":"https://doi.org/10.1155/2020/8987150","url":null,"abstract":"This article presents the implementation of a learning environment for the teaching of control systems. This environment integrates physical equipment and simulation, monitoring, and control through a network. A software platform based on ROS (Robotic Operating System) grants access to the system through intranet and Internet, facilitating the integration of new test equipment. The environment developed can be used in didactic experiences both inside and outside the classroom, enhancing the learning of four main study topics: modeling, analysis, parameter estimation, and controller design.","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78894362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. A. Ogunde, Taiwo Stephen Fayose, B. Ajayi, D. Omosigho
In this paper, we proposed a new four-parameter Extended Gumbel type-2 distribution which can further be split into the Lehman type I and type II Gumbel type-2 distribution by using a generalized exponentiated distribution. The distributional properties of the proposed distribution have been studied. We derive the th moment; thus, we generalize some results in the literature. Expressions for the density, moment-generating function, and th moment of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and provide the information matrix of the developed distribution. Two life data, which consist of data on cancer remission times and survival times of pigs, were used to show the applicability of the Extended Gumbel type-2 distribution in modelling real life data, and we found out that the new model is more flexible than its submodels.
{"title":"Extended Gumbel Type-2 Distribution: Properties and Applications","authors":"A. A. Ogunde, Taiwo Stephen Fayose, B. Ajayi, D. Omosigho","doi":"10.1155/2020/2798327","DOIUrl":"https://doi.org/10.1155/2020/2798327","url":null,"abstract":"In this paper, we proposed a new four-parameter Extended Gumbel type-2 distribution which can further be split into the Lehman type I and type II Gumbel type-2 distribution by using a generalized exponentiated distribution. The distributional properties of the proposed distribution have been studied. We derive the th moment; thus, we generalize some results in the literature. Expressions for the density, moment-generating function, and th moment of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and provide the information matrix of the developed distribution. Two life data, which consist of data on cancer remission times and survival times of pigs, were used to show the applicability of the Extended Gumbel type-2 distribution in modelling real life data, and we found out that the new model is more flexible than its submodels.","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84370605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A linear operator on a Hilbert space may be approximated with finite matrices by choosing an orthonormal basis of thez Hilbert space. In this paper, we establish an approximation of the - numerical range of bounded and unbounnded operator matrices by variational methods. Application to SchrA¶dinger operator, Stokes operator, and Hain-LA¼st operator is given.
{"title":"Computing the q-Numerical Range of Differential Operators","authors":"Ahmed Muhammad, Faiza Abdullah Shareef","doi":"10.1155/2020/6584805","DOIUrl":"https://doi.org/10.1155/2020/6584805","url":null,"abstract":"A linear operator on a Hilbert space may be approximated with finite matrices by choosing an orthonormal basis of thez Hilbert space. In this paper, we establish an approximation of the - numerical range of bounded and unbounnded operator matrices by variational methods. Application to SchrA¶dinger operator, Stokes operator, and Hain-LA¼st operator is given.","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78814329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The dynamic behavior of structures with piezoelectric patches is governed by partial differential equations with strong singularities. To directly deal with these equations, well adapted numerical procedures are required. In this work, the differential quadrature method (DQM) combined with a regularization procedure for space and implicit scheme for time discretization is used. The DQM is a simple method that can be implemented with few grid points and can give results with a good accuracy. However, the DQM presents some difficulties when applied to partial differential equations involving strong singularities. This is due to the fact that the subsidiaries of the singular functions cannot be straightforwardly discretized by the DQM. A methodological approach based on the regularization procedure is used here to overcome this difficulty and the derivatives of the Dirac-delta function are replaced by regularized smooth functions. Thanks to this regularization, the resulting differential equations can be directly discretized using the DQM. The efficiency and applicability of the proposed approach are demonstrated in the computation of the dynamic behavior of beams for various boundary conditions and excited by impulse and Multiharmonics piezoelectric actuators. The obtained numerical results are well compared to the developed analytical solution.
{"title":"A New Numerical Procedure for Vibration Analysis of Beam under Impulse and Multiharmonics Piezoelectric Actuators","authors":"Yassin Belkourchia, L. Azrar","doi":"10.1155/2020/7391848","DOIUrl":"https://doi.org/10.1155/2020/7391848","url":null,"abstract":"The dynamic behavior of structures with piezoelectric patches is governed by partial differential equations with strong singularities. To directly deal with these equations, well adapted numerical procedures are required. In this work, the differential quadrature method (DQM) combined with a regularization procedure for space and implicit scheme for time discretization is used. The DQM is a simple method that can be implemented with few grid points and can give results with a good accuracy. However, the DQM presents some difficulties when applied to partial differential equations involving strong singularities. This is due to the fact that the subsidiaries of the singular functions cannot be straightforwardly discretized by the DQM. A methodological approach based on the regularization procedure is used here to overcome this difficulty and the derivatives of the Dirac-delta function are replaced by regularized smooth functions. Thanks to this regularization, the resulting differential equations can be directly discretized using the DQM. The efficiency and applicability of the proposed approach are demonstrated in the computation of the dynamic behavior of beams for various boundary conditions and excited by impulse and Multiharmonics piezoelectric actuators. The obtained numerical results are well compared to the developed analytical solution.","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80182800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, an alternative strategy for real-time control of active distribution network voltage is developed, not by controlling the bus voltage as in the various centralized, decentralized, and local approaches presented in literature but rather by only eliminating the impact produced by active and reactive power of distributed generation (DG) units on the voltage of all network nodes and keeping the traditional voltage control systems dealing with the same constraints of passive systems. In literature, voltage deterioration introduced by DGs has been reported as one of the main obstacles for the interconnection of large amounts of DG units to the existing networks. In this paper, the novel control strategy is based on a sensitivity formula developed to calculate the compensation needed for additional distributed flexible AC transmission system (D-FACTS) devices to push and pull the exact reactive power and to eliminate the impact produced by DGs on the network voltage profile. The criteria of the allocation of the var devices and the required network reinforcement are developed in this paper, considering all possible topology structures, and an innovative codification method is introduced to reduce the needed computation time and communication data to actualize the sensitivity coefficients and get the proposed control approach flexible with network topology reconfiguration. The risk of the conflict of the proposed control system with the traditional voltage equipment is reduced due to the fast capability of D-FACTS devices to regulate their reactive power in finer granularity. A case study of two meshed IEEE 15-bus feeders is introduced to compare the voltage behavior with and without the presence of DG units and to evaluate the total system losses. The proposed method could be used for the interconnection of the first generation units in emerging networks, which does not yet have an active voltage control strategy, as it could be used for DG units not able to be connected to existing centralized control systems and it could also be used as the principal voltage control strategy, with the extension for several neighboring units and the preservation of the traditional voltage control systems.
{"title":"Elimination of the Impact Produced by DG Units on the Voltage Profile of Distribution Networks","authors":"Saad Ouali, Abdeljabbar Cherkaoui","doi":"10.1155/2020/1395943","DOIUrl":"https://doi.org/10.1155/2020/1395943","url":null,"abstract":"In this paper, an alternative strategy for real-time control of active distribution network voltage is developed, not by controlling the bus voltage as in the various centralized, decentralized, and local approaches presented in literature but rather by only eliminating the impact produced by active and reactive power of distributed generation (DG) units on the voltage of all network nodes and keeping the traditional voltage control systems dealing with the same constraints of passive systems. In literature, voltage deterioration introduced by DGs has been reported as one of the main obstacles for the interconnection of large amounts of DG units to the existing networks. In this paper, the novel control strategy is based on a sensitivity formula developed to calculate the compensation needed for additional distributed flexible AC transmission system (D-FACTS) devices to push and pull the exact reactive power and to eliminate the impact produced by DGs on the network voltage profile. The criteria of the allocation of the var devices and the required network reinforcement are developed in this paper, considering all possible topology structures, and an innovative codification method is introduced to reduce the needed computation time and communication data to actualize the sensitivity coefficients and get the proposed control approach flexible with network topology reconfiguration. The risk of the conflict of the proposed control system with the traditional voltage equipment is reduced due to the fast capability of D-FACTS devices to regulate their reactive power in finer granularity. A case study of two meshed IEEE 15-bus feeders is introduced to compare the voltage behavior with and without the presence of DG units and to evaluate the total system losses. The proposed method could be used for the interconnection of the first generation units in emerging networks, which does not yet have an active voltage control strategy, as it could be used for DG units not able to be connected to existing centralized control systems and it could also be used as the principal voltage control strategy, with the extension for several neighboring units and the preservation of the traditional voltage control systems.","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77247948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a nonlinear deterministic model for the dynamics of corruption is proposed and analysed qualitatively using the stability theory of differential equations. The basic reproduction number with respect to the corruption-free equilibrium is obtained using next-generation matrix method. The conditions for local and global asymptotic stability of corruption-free and endemic equilibria are established. From the analysis using center manifold theory, the model exhibits forward bifurcation. Then, the model was extended by reformulating it as an optimal control problem, with the use of two time-dependent controls to assess the impact of corruption on human population, namely, campaigning about corruption through media and advertisement and exposing corrupted individuals to jail and giving punishment. By using Pontryagin’s maximum principle, necessary conditions for the optimal control of the transmission of corruption were derived. From the numerical simulation, it was found that the integrated control strategy must be taken to fight against corruption.
{"title":"Mathematical Modeling, Analysis, and Optimal Control of Corruption Dynamics","authors":"Haileyesus Tessema Alemneh","doi":"10.1155/2020/5109841","DOIUrl":"https://doi.org/10.1155/2020/5109841","url":null,"abstract":"In this paper, a nonlinear deterministic model for the dynamics of corruption is proposed and analysed qualitatively using the stability theory of differential equations. The basic reproduction number with respect to the corruption-free equilibrium is obtained using next-generation matrix method. The conditions for local and global asymptotic stability of corruption-free and endemic equilibria are established. From the analysis using center manifold theory, the model exhibits forward bifurcation. Then, the model was extended by reformulating it as an optimal control problem, with the use of two time-dependent controls to assess the impact of corruption on human population, namely, campaigning about corruption through media and advertisement and exposing corrupted individuals to jail and giving punishment. By using Pontryagin’s maximum principle, necessary conditions for the optimal control of the transmission of corruption were derived. From the numerical simulation, it was found that the integrated control strategy must be taken to fight against corruption.","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88229230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we propose and analyze a fuzzy model for the health risk challenges associated with alcoholism. The fuzziness gets into the system by assuming uncertainty condition in the measure of influence of the risky individual and the additional death rate. Specifically, the fuzzy numbers are defined functions of the degree of peer influence of a susceptible individual into drinking behavior. The fuzzy basic risk reproduction number is computed by means of Next-Generation Matrix and analyzed. The analysis of reveals that health risk associated with alcoholism can be effectively controlled by raising the resistance of susceptible individuals and consequently reducing their chances of initiation of drinking behavior. When perceived respectable individuals in the communities are involved in health education campaign, the public awareness about prevailing risks increases rapidly. Consequently, a large population proportion will gain protection from initiation of drinks which would accelerate their health condition into more risky states. In a situation where peer influence is low, the health risks are likely to be reduced by natural factors that provide virtual protection from alcoholism. However, when the perceived most influential people in the community engage in alcoholism behavior, it implies an increase in the force of influence, and as such, the system will be endemic.
{"title":"Fuzzy Modeling for the Dynamics of Alcohol-Related Health Risks with Changing Behaviors via Cultural Beliefs","authors":"Maranya M. Mayengo, M. Kgosimore, S. Chakraverty","doi":"10.1155/2020/8470681","DOIUrl":"https://doi.org/10.1155/2020/8470681","url":null,"abstract":"In this paper, we propose and analyze a fuzzy model for the health risk challenges associated with alcoholism. The fuzziness gets into the system by assuming uncertainty condition in the measure of influence of the risky individual and the additional death rate. Specifically, the fuzzy numbers are defined functions of the degree of peer influence of a susceptible individual into drinking behavior. The fuzzy basic risk reproduction number is computed by means of Next-Generation Matrix and analyzed. The analysis of reveals that health risk associated with alcoholism can be effectively controlled by raising the resistance of susceptible individuals and consequently reducing their chances of initiation of drinking behavior. When perceived respectable individuals in the communities are involved in health education campaign, the public awareness about prevailing risks increases rapidly. Consequently, a large population proportion will gain protection from initiation of drinks which would accelerate their health condition into more risky states. In a situation where peer influence is low, the health risks are likely to be reduced by natural factors that provide virtual protection from alcoholism. However, when the perceived most influential people in the community engage in alcoholism behavior, it implies an increase in the force of influence, and as such, the system will be endemic.","PeriodicalId":92219,"journal":{"name":"International journal of big data","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87762817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}