Palladium(0) catalyzed Suzuki cross-coupling reaction of 2,5-dibromo-3-methylthiophene: selectivity, characterization, DFT studies and their biological evaluations.
Komal Rizwan, Muhammad Zubair, Nasir Rasool, Tariq Mahmood, Khurshid Ayub, Noorjahan Banu Alitheen, Muhammad Nazirul Mubin Aziz, Muhammad Nadeem Akhtar, Faiz-Ul-Hassan Nasim, Snober Mona Bukhary, Viqar Uddin Ahmad, Mubeen Rani
{"title":"Palladium(0) catalyzed Suzuki cross-coupling reaction of 2,5-dibromo-3-methylthiophene: selectivity, characterization, DFT studies and their biological evaluations.","authors":"Komal Rizwan, Muhammad Zubair, Nasir Rasool, Tariq Mahmood, Khurshid Ayub, Noorjahan Banu Alitheen, Muhammad Nazirul Mubin Aziz, Muhammad Nadeem Akhtar, Faiz-Ul-Hassan Nasim, Snober Mona Bukhary, Viqar Uddin Ahmad, Mubeen Rani","doi":"10.1186/s13065-018-0404-7","DOIUrl":null,"url":null,"abstract":"<p><p>Thiophene derivatives have shown versatile pharmacological activities. The Suzuki reaction proved a convenient method for C-C bond formations in organic molecules. In the present research work novel derivatives of 2,5-dibromo-3-methylthiophene (3a-k and 3l-p) has been synthesized, via Suzuki coupling reaction in low to moderate yields. A wide range of functional groups were well tolerated in reaction. Density functional theory investigations on all synthesized derivatives (3a-3p) were performed in order to explore the structural properties. The pharmaceutical potential of synthesized compounds was investigated through various bioassays (antioxidant, antibacterial, antiurease activities). The compounds 3l, 3g, 3j, showed excellent antioxidant activity (86.0, 82.0, 81.3%), respectively by scavenging DPPH. Synthesized compounds showed promising antibacterial activity against tested strains. 3b, 3k, 3a, 3d and 3j showed potential antiurease activity with 67.7, 64.2, 58.8, 54.7 and 52.1% inhibition at 50 µg/ml. Results indicated that synthesized molecules could be a potential source of pharmaceutical agents.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"49"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0404-7","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0404-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 21
Abstract
Thiophene derivatives have shown versatile pharmacological activities. The Suzuki reaction proved a convenient method for C-C bond formations in organic molecules. In the present research work novel derivatives of 2,5-dibromo-3-methylthiophene (3a-k and 3l-p) has been synthesized, via Suzuki coupling reaction in low to moderate yields. A wide range of functional groups were well tolerated in reaction. Density functional theory investigations on all synthesized derivatives (3a-3p) were performed in order to explore the structural properties. The pharmaceutical potential of synthesized compounds was investigated through various bioassays (antioxidant, antibacterial, antiurease activities). The compounds 3l, 3g, 3j, showed excellent antioxidant activity (86.0, 82.0, 81.3%), respectively by scavenging DPPH. Synthesized compounds showed promising antibacterial activity against tested strains. 3b, 3k, 3a, 3d and 3j showed potential antiurease activity with 67.7, 64.2, 58.8, 54.7 and 52.1% inhibition at 50 µg/ml. Results indicated that synthesized molecules could be a potential source of pharmaceutical agents.
期刊介绍:
BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research.
Sections:
-Analytical Chemistry
-Organic Chemistry
-Environmental and Energy Chemistry
-Agricultural and Food Chemistry
-Inorganic Chemistry
-Medicinal Chemistry
-Physical Chemistry
-Materials and Macromolecular Chemistry
-Green and Sustainable Chemistry