{"title":"Bantam regulates the axonal geometry of Drosophila larval brain by modulating actin regulator enabled.","authors":"Animesh Banerjee, Jagat Kumar Roy","doi":"10.1007/s10158-018-0212-8","DOIUrl":null,"url":null,"abstract":"<p><p>During development, axonogenesis, an integral part of neurogenesis, is based on well-concerted events comprising generation, rearrangement, migration, elongation, and adhesion of neurons. Actin, specifically the crosstalk between the guardians of actin polymerization, like enabled, chickadee, capping protein plays an essential role in crafting several events of axonogenesis. Recent evidences reflect multifaceted role of microRNA during axonogenesis. Here, we investigated the role of bantam miRNA, a well-established miRNA in Drosophila, in regulating the actin organization during brain development. Our immunofluorescence studies showed altered arrangement of neurons and actin filaments whereas both qPCR and western blot revealed elevated expression of enabled, one of the actin modulators in bantam mutant background. Collectively, our results clearly demonstrate that bantam plays an instrumental role in shaping the axon architecture regulating the actin geometry through its modulator enabled.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 2","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0212-8","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-018-0212-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 2
Abstract
During development, axonogenesis, an integral part of neurogenesis, is based on well-concerted events comprising generation, rearrangement, migration, elongation, and adhesion of neurons. Actin, specifically the crosstalk between the guardians of actin polymerization, like enabled, chickadee, capping protein plays an essential role in crafting several events of axonogenesis. Recent evidences reflect multifaceted role of microRNA during axonogenesis. Here, we investigated the role of bantam miRNA, a well-established miRNA in Drosophila, in regulating the actin organization during brain development. Our immunofluorescence studies showed altered arrangement of neurons and actin filaments whereas both qPCR and western blot revealed elevated expression of enabled, one of the actin modulators in bantam mutant background. Collectively, our results clearly demonstrate that bantam plays an instrumental role in shaping the axon architecture regulating the actin geometry through its modulator enabled.
期刊介绍:
Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include:
Functional analysis of the invertebrate nervous system;
Molecular neuropharmacology and toxicology;
Neurogenetics and genomics;
Functional anatomy;
Neurodevelopment;
Neuronal networks;
Molecular and cellular mechanisms of behavior and behavioural plasticity.