Mitochondrial Subtype Identification and Characterization

Q1 Health Professions Current Protocols in Cytometry Pub Date : 2018-06-26 DOI:10.1002/cpcy.41
Joseph R. Daniele, Kartoosh Heydari, Andrew Dillin
{"title":"Mitochondrial Subtype Identification and Characterization","authors":"Joseph R. Daniele,&nbsp;Kartoosh Heydari,&nbsp;Andrew Dillin","doi":"10.1002/cpcy.41","DOIUrl":null,"url":null,"abstract":"<p>Healthy, functional mitochondria are central to many cellular and physiological phenomena, including aging, metabolism, and stress resistance. A key feature of healthy mitochondria is a high membrane potential (Δψ) or charge differential (i.e., proton gradient) between the matrix and inner mitochondrial membrane. Mitochondrial Δψ has been extensively characterized via flow cytometry of intact cells, which measures the average membrane potential within a cell. However, the characteristics of individual mitochondria differ dramatically even within a single cell, and thus interrogation of mitochondrial features at the organelle level is necessary to better understand and accurately measure heterogeneity. Here we describe a new flow cytometric methodology that enables the quantification and classification of mitochondrial subtypes (via their Δψ, size, and substructure) using the small animal model <i>C. elegans</i>. Future application of this methodology should allow research to discern the bioenergetic and mitochondrial component in a number of human disease and aging models, including, <i>C. elegans</i>, cultured cells, small animal models, and human biopsy samples. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":11020,"journal":{"name":"Current Protocols in Cytometry","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcy.41","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cytometry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcy.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 1

Abstract

Healthy, functional mitochondria are central to many cellular and physiological phenomena, including aging, metabolism, and stress resistance. A key feature of healthy mitochondria is a high membrane potential (Δψ) or charge differential (i.e., proton gradient) between the matrix and inner mitochondrial membrane. Mitochondrial Δψ has been extensively characterized via flow cytometry of intact cells, which measures the average membrane potential within a cell. However, the characteristics of individual mitochondria differ dramatically even within a single cell, and thus interrogation of mitochondrial features at the organelle level is necessary to better understand and accurately measure heterogeneity. Here we describe a new flow cytometric methodology that enables the quantification and classification of mitochondrial subtypes (via their Δψ, size, and substructure) using the small animal model C. elegans. Future application of this methodology should allow research to discern the bioenergetic and mitochondrial component in a number of human disease and aging models, including, C. elegans, cultured cells, small animal models, and human biopsy samples. © 2018 by John Wiley & Sons, Inc.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体亚型鉴定与表征
健康、功能性的线粒体是许多细胞和生理现象的核心,包括衰老、新陈代谢和抗逆性。健康线粒体的一个关键特征是高膜电位(Δψ)或基质和线粒体内膜之间的电荷差(即质子梯度)。线粒体Δψ已经通过完整细胞的流式细胞术广泛表征,测量细胞内的平均膜电位。然而,即使在单个细胞内,单个线粒体的特征也存在显著差异,因此在细胞器水平上对线粒体特征的研究对于更好地理解和准确测量异质性是必要的。在这里,我们描述了一种新的流式细胞术方法,可以使用小动物模型秀丽隐杆线虫对线粒体亚型(通过它们的Δψ、大小和亚结构)进行量化和分类。该方法的未来应用将使研究能够在许多人类疾病和衰老模型中识别生物能量和线粒体成分,包括秀丽隐杆线虫、培养细胞、小动物模型和人类活检样本。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Protocols in Cytometry
Current Protocols in Cytometry Health Professions-Medical Laboratory Technology
自引率
0.00%
发文量
0
期刊介绍: Published in affiliation with the International Society for Advancement of Cytometry, Current Protocols in Cytometry is a "best practices" collection that distills and organizes the absolute latest techniques from the top cytometry labs and specialists worldwide. It is the most complete set of peer-reviewed protocols for flow and image cytometry available.
期刊最新文献
Issue Information Detection and Sorting of Extracellular Vesicles and Viruses Using nanoFACS Live Imaging of the Lung Small Particle Fluorescence and Light Scatter Calibration Using FCMPASS Software. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1