Xiaobin Wang, Zhengjiao Ren, Mengqi Wang, Min Chen, Aiming Lu, Weijie Si, Chunlong Yang
{"title":"Design and synthesis of novel 3-(thiophen-2-yl)-1,5-dihydro-2H-pyrrol-2-one derivatives bearing a hydrazone moiety as potential fungicides.","authors":"Xiaobin Wang, Zhengjiao Ren, Mengqi Wang, Min Chen, Aiming Lu, Weijie Si, Chunlong Yang","doi":"10.1186/s13065-018-0452-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tetramic acid, thiophene and hydrazone derivatives were found to exhibit favorable antifungal activity. Aiming to discover novel template molecules with potent antifungal activity, a series of novel 3-(thiophen-2-yl)-1,5-dihydro-2H-pyrrol-2-one derivatives containing a hydrazone group were designed, synthesized, and evaluated for their antifungal activity.</p><p><strong>Results: </strong>The structures of 3-(thiophen-2-yl)-1,5-dihydro-2H-pyrrol-2-one derivatives bearing a hydrazone group were confirmed by FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>1</sup>H-<sup>1</sup>H NOESY, EI-MS and elemental analysis. Antifungal assays indicated that some title compounds exhibited antifungal activity against Fusarium graminearum (Fg), Rhizoctorzia solani (Rs), Botrytis cinerea (Bc) and Colletotrichum capsici (Cc) in vitro. Strikingly, the EC<sub>50</sub> value of 5e against Rs was 1.26 µg/mL, which is better than that of drazoxolon (1.77 µg/mL). Meanwhile, title compounds 5b, 5d, 5e-5g, 5n-5q and 5t exhibited remarkable anti-Cc activity, with corresponding EC<sub>50</sub> values of 7.65, 9.97, 6.04, 6.66, 7.84, 7.59, 9.47, 5.52, 6.41 and 7.53 µg/mL, respectively, which are better than that of drazoxolon (19.46 µg/mL).</p><p><strong>Conclusions: </strong>A series of 3-(thiophen-2-yl)-1,5-dihydro-2H-pyrrol-2-one derivatives bearing a hydrazone group were designed, synthesized and evaluated for their antifungal activity against Fg, Rs, Bc and Cc. Bioassays indicated that some target compounds exhibited obvious antifungal activity against the above tested fungi. These results provide a significant basis for the further structural optimization of tetramic acid derivatives as potential fungicides.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":"12 1","pages":"83"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0452-z","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0452-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 12
Abstract
Background: Tetramic acid, thiophene and hydrazone derivatives were found to exhibit favorable antifungal activity. Aiming to discover novel template molecules with potent antifungal activity, a series of novel 3-(thiophen-2-yl)-1,5-dihydro-2H-pyrrol-2-one derivatives containing a hydrazone group were designed, synthesized, and evaluated for their antifungal activity.
Results: The structures of 3-(thiophen-2-yl)-1,5-dihydro-2H-pyrrol-2-one derivatives bearing a hydrazone group were confirmed by FT-IR, 1H NMR, 13C NMR, 1H-1H NOESY, EI-MS and elemental analysis. Antifungal assays indicated that some title compounds exhibited antifungal activity against Fusarium graminearum (Fg), Rhizoctorzia solani (Rs), Botrytis cinerea (Bc) and Colletotrichum capsici (Cc) in vitro. Strikingly, the EC50 value of 5e against Rs was 1.26 µg/mL, which is better than that of drazoxolon (1.77 µg/mL). Meanwhile, title compounds 5b, 5d, 5e-5g, 5n-5q and 5t exhibited remarkable anti-Cc activity, with corresponding EC50 values of 7.65, 9.97, 6.04, 6.66, 7.84, 7.59, 9.47, 5.52, 6.41 and 7.53 µg/mL, respectively, which are better than that of drazoxolon (19.46 µg/mL).
Conclusions: A series of 3-(thiophen-2-yl)-1,5-dihydro-2H-pyrrol-2-one derivatives bearing a hydrazone group were designed, synthesized and evaluated for their antifungal activity against Fg, Rs, Bc and Cc. Bioassays indicated that some target compounds exhibited obvious antifungal activity against the above tested fungi. These results provide a significant basis for the further structural optimization of tetramic acid derivatives as potential fungicides.
期刊介绍:
BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research.
Sections:
-Analytical Chemistry
-Organic Chemistry
-Environmental and Energy Chemistry
-Agricultural and Food Chemistry
-Inorganic Chemistry
-Medicinal Chemistry
-Physical Chemistry
-Materials and Macromolecular Chemistry
-Green and Sustainable Chemistry