下载PDF
{"title":"Methods for Generating Vascularized Islet-Like Organoids Via Self-Condensation","authors":"Yoshinobu Takahashi, Takanori Takebe, Hideki Taniguchi","doi":"10.1002/cpsc.49","DOIUrl":null,"url":null,"abstract":"<p>Despite the promise of emerging organoid-based approaches, building additional complexity, such as the vascular network, remains a major challenge toward regenerative therapy. Recently, we developed a complex organoid engineering method by \"self-condensation,\" wherein mesenchymal cell–dependent contraction enables large-scale condensation from heterotypic multiple progenitors. Here, we describe the adaptation of this protocol for generating three-dimensional (3D) pancreatic condensates from dissociated β cell lines (MIN6) together with blood vessel–forming progenitors. This protocol achieves 3D pancreatic islet-like organoid self-organization with endothelialized networks through mesenchymal stem cell–dependent contraction. Transplantation of pancreatic islet-like organoids treats diabetes in mice effectively. Given the donor shortage associated with clinical islet transplantation, our approach offers a promising alternative toward therapeutic organoid transplantation. © 2018 by John Wiley & Sons, Inc.</p>","PeriodicalId":53703,"journal":{"name":"Current Protocols in Stem Cell Biology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpsc.49","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Stem Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 21
引用
批量引用
Abstract
Despite the promise of emerging organoid-based approaches, building additional complexity, such as the vascular network, remains a major challenge toward regenerative therapy. Recently, we developed a complex organoid engineering method by "self-condensation," wherein mesenchymal cell–dependent contraction enables large-scale condensation from heterotypic multiple progenitors. Here, we describe the adaptation of this protocol for generating three-dimensional (3D) pancreatic condensates from dissociated β cell lines (MIN6) together with blood vessel–forming progenitors. This protocol achieves 3D pancreatic islet-like organoid self-organization with endothelialized networks through mesenchymal stem cell–dependent contraction. Transplantation of pancreatic islet-like organoids treats diabetes in mice effectively. Given the donor shortage associated with clinical islet transplantation, our approach offers a promising alternative toward therapeutic organoid transplantation. © 2018 by John Wiley & Sons, Inc.
血管化胰岛样器官的自凝生成方法
尽管新兴的基于类器官的方法有希望,但建立额外的复杂性,如血管网络,仍然是再生治疗的主要挑战。最近,我们通过“自缩聚”开发了一种复杂的类器官工程方法,其中间充质细胞依赖性收缩能够从异型多个祖细胞大规模缩聚。在这里,我们描述了该方案的适应性,从解离的β细胞系(MIN6)和血管形成祖细胞一起产生三维(3D)胰腺凝析液。该方案通过间充质干细胞依赖性收缩实现具有内皮化网络的三维胰岛样器官自组织。胰岛样器官移植可有效治疗小鼠糖尿病。鉴于与临床胰岛移植相关的供体短缺,我们的方法为治疗性类器官移植提供了一个有希望的替代方法。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。