Regulation of Division and Differentiation of Plant Stem Cells.

IF 11.4 1区 生物学 Q1 CELL BIOLOGY Annual review of cell and developmental biology Pub Date : 2018-10-06 Epub Date: 2018-08-22 DOI:10.1146/annurev-cellbio-100617-062459
Edith Pierre-Jerome, Colleen Drapek, Philip N Benfey
{"title":"Regulation of Division and Differentiation of Plant Stem Cells.","authors":"Edith Pierre-Jerome,&nbsp;Colleen Drapek,&nbsp;Philip N Benfey","doi":"10.1146/annurev-cellbio-100617-062459","DOIUrl":null,"url":null,"abstract":"<p><p>A major challenge in developmental biology is unraveling the precise regulation of plant stem cell maintenance and the transition to a fully differentiated cell. In this review, we highlight major themes coordinating the acquisition of cell identity and subsequent differentiation in plants. Plant cells are immobile and establish position-dependent cell lineages that rely heavily on external cues. Central players are the hormones auxin and cytokinin, which balance cell division and differentiation during organogenesis. Transcription factors and miRNAs, many of which are mobile in plants, establish gene regulatory networks that communicate cell position and fate. Small peptide signaling also provides positional cues as new cell types emerge from stem cell division and progress through differentiation. These pathways recruit similar players for patterning different organs, emphasizing the modular nature of gene regulatory networks. Finally, we speculate on the outstanding questions in the field and discuss how they may be addressed by emerging technologies.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"34 ","pages":"289-310"},"PeriodicalIF":11.4000,"publicationDate":"2018-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cellbio-100617-062459","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-100617-062459","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 61

Abstract

A major challenge in developmental biology is unraveling the precise regulation of plant stem cell maintenance and the transition to a fully differentiated cell. In this review, we highlight major themes coordinating the acquisition of cell identity and subsequent differentiation in plants. Plant cells are immobile and establish position-dependent cell lineages that rely heavily on external cues. Central players are the hormones auxin and cytokinin, which balance cell division and differentiation during organogenesis. Transcription factors and miRNAs, many of which are mobile in plants, establish gene regulatory networks that communicate cell position and fate. Small peptide signaling also provides positional cues as new cell types emerge from stem cell division and progress through differentiation. These pathways recruit similar players for patterning different organs, emphasizing the modular nature of gene regulatory networks. Finally, we speculate on the outstanding questions in the field and discuss how they may be addressed by emerging technologies.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物干细胞的分裂和分化调控。
发育生物学的一个主要挑战是揭示植物干细胞维持和向完全分化细胞过渡的精确调控。在这篇综述中,我们重点介绍了协调植物细胞身份的获得和随后的分化的主要主题。植物细胞是不动的,并建立了高度依赖外部信号的位置依赖性细胞系。生长素和细胞分裂素是器官发生过程中平衡细胞分裂和分化的激素。转录因子和mirna,其中许多在植物中是移动的,建立基因调控网络,沟通细胞的位置和命运。小肽信号也为干细胞分裂和分化过程中新细胞类型的出现提供了位置线索。这些途径招募相似的参与者来模拟不同的器官,强调基因调控网络的模块化本质。最后,我们推测了该领域的突出问题,并讨论了新兴技术如何解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.50
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.
期刊最新文献
Plant Cell Wall Loosening by Expansins. Ribosome Assembly and Repair. What Is a Plant Cell Type in the Age of Single-Cell Biology? It's Complicated. The Archaeal Cell Cycle. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1