首页 > 最新文献

Annual review of cell and developmental biology最新文献

英文 中文
Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification. 适应性细胞辐射与动物神经系统多样化的遗传机制》(Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification)。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-25 DOI: 10.1146/annurev-cellbio-111822-124041
Jenks Hehmeyer, Flora Plessier, Heather Marlow

In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.

在动物中,神经系统是多细胞生物体与环境之间的主要界面。随着生物体变得越来越大、越来越复杂,神经系统的主要功能扩展到包括通过旁分泌和突触功能调节和协调单个反应细胞,以及监测和维持生物体自身的内部环境。这最初是通过旁分泌信号来实现的,最终在某些类群中通过组装多细胞回路来实现。具有类似功能和中枢神经系统的细胞已在多个类群中独立出现。我们将重点介绍神经系统平行多样化的分子机制。
{"title":"Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification.","authors":"Jenks Hehmeyer, Flora Plessier, Heather Marlow","doi":"10.1146/annurev-cellbio-111822-124041","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-111822-124041","url":null,"abstract":"<p><p>In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalized Protein Binders in Developmental Biology. 发育生物学中的功能化蛋白质粘合剂。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-22 DOI: 10.1146/annurev-cellbio-112122-025214
Sophie T Schnider, M Alessandra Vigano, Markus Affolter, Gustavo Aguilar

Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden each step along the way to generate form and function during development.

发育生物学从间接研究蛋白质功能的遗传和反向遗传方法中获益匪浅。最近,从不同合成支架中提取的纳米抗体和其他蛋白质结合剂被用于直接剖析蛋白质功能。蛋白质结合体已与功能域融合,如在结合后导致蛋白质降解、重新定位、可视化或对目标蛋白质进行翻译后修饰。这种功能化蛋白质结合剂的使用使人们能够以前所未有的方式研究发育过程中的蛋白质组。未来几年,蛋白质结合剂计算设计的出现,以及支架工程和合成生物学的进一步发展,将推动基于蛋白质结合剂的新型技术的发展。更精确地研究蛋白质组将有助于更好地理解发育过程中产生形态和功能的每一步所隐藏的巨大分子复杂性。
{"title":"Functionalized Protein Binders in Developmental Biology.","authors":"Sophie T Schnider, M Alessandra Vigano, Markus Affolter, Gustavo Aguilar","doi":"10.1146/annurev-cellbio-112122-025214","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-112122-025214","url":null,"abstract":"<p><p>Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden each step along the way to generate form and function during development.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Sensory Receptors. 感觉受体的进化。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-10 DOI: 10.1146/annurev-cellbio-120123-112853
Wendy A Valencia-Montoya, Naomi E Pierce, Nicholas W Bellono

Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.

感觉受体处于生物体与其环境之间的界面,因此是生物创新的关键场所。在这里,我们调查了主要的感觉受体家族,以揭示新出现的进化模式。触觉、温度和光受体是动物祖先感官工具包的一部分,往往早于多细胞性和神经系统的进化。相比之下,化学感受器则表现出与化学环境的不同复杂性相关的特定品系扩展和收缩的动态历史。一个反复出现的主题包括从神经递质受体独立过渡到外界各种刺激的感觉受体。然后,我们概述了感觉受体多样化背后的进化机制,并重点举例说明了利用自然选择特征来识别新型感觉适应性的方法。最后,我们讨论了感觉受体作为进化热点推动了生殖隔离和物种分化,从而促成了动物令人惊叹的多样性。
{"title":"Evolution of Sensory Receptors.","authors":"Wendy A Valencia-Montoya, Naomi E Pierce, Nicholas W Bellono","doi":"10.1146/annurev-cellbio-120123-112853","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120123-112853","url":null,"abstract":"<p><p>Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dormancy, Quiescence, and Diapause: Savings Accounts for Life. 休眠、静止和暂停:生命储蓄账户
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-10 DOI: 10.1146/annurev-cellbio-112122-022528
Hatice Özge Özgüldez, Aydan Bulut-Karslioğlu

Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.

地球上的生命在漫长的岁月中经历了无数挑战,但总是以这样或那样的方式取得胜利。从大面积的生物灭绝到更多的日常觅食困境,不可预知性无处不在。生命形式对不断变化的环境的适应能力是赋予生命强大生命力的关键。适应性已成为以遗传基因变化为媒介的达尔文进化论的代名词。这种极端的以基因为中心的观点虽然具有核心意义,但有时却遮蔽了我们对细胞作为一个自我调节实体的认识,因为细胞是由基因数据提供信息的。增强适应能力的一个基本要素是调节细胞生长的能力。在这篇综述中,我们广泛概述了跨越物种、组织和调控机制的生长调控。我们旨在强调这些现象及其分子调节机制的共性和差异。最后,我们提出了有待进一步探讨的开放性问题和领域。
{"title":"Dormancy, Quiescence, and Diapause: Savings Accounts for Life.","authors":"Hatice Özge Özgüldez, Aydan Bulut-Karslioğlu","doi":"10.1146/annurev-cellbio-112122-022528","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-112122-022528","url":null,"abstract":"<p><p>Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Left-Right Asymmetry in Invertebrates: From Molecules to Organisms. 无脊椎动物的左右不对称:从分子到生物。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-09 DOI: 10.1146/annurev-cellbio-111822-010628
Reiko Kuroda

Although most animals appear symmetric externally, they exhibit chirality within their body cavity, i.e., in terms of asymmetric organ position, directional organ looping, and lateralized organ function. Left-right (LR) asymmetry is determined genetically by intricate molecular interactions that occur during development. Key genes have been elucidated in several species. There are common mechanisms in vertebrates and invertebrates, but some appear to exhibit unique mechanisms. This review focuses on LR asymmetry formation in invertebrates, particularly Drosophila, ascidians, and mollusks. It aims to understand the role of the genes that are key to creating LR asymmetry and how chirality information is converted/transmitted across the hierarchies from molecules to cells and from cells to tissues.

虽然大多数动物在外部看起来是对称的,但它们在体腔内却表现出手性,即器官位置不对称、器官定向循环和器官功能侧向化。左右(LR)不对称在基因上是由发育过程中发生的错综复杂的分子相互作用决定的。一些物种的关键基因已被阐明。脊椎动物和无脊椎动物有共同的机制,但有些似乎表现出独特的机制。本综述侧重于无脊椎动物,尤其是果蝇、腹足纲动物和软体动物的 LR 不对称形成。其目的是了解对形成 LR 不对称起关键作用的基因的作用,以及手性信息是如何在分子到细胞以及细胞到组织的整个层次中转换/传递的。
{"title":"Left-Right Asymmetry in Invertebrates: From Molecules to Organisms.","authors":"Reiko Kuroda","doi":"10.1146/annurev-cellbio-111822-010628","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-111822-010628","url":null,"abstract":"<p><p>Although most animals appear symmetric externally, they exhibit chirality within their body cavity, i.e., in terms of asymmetric organ position, directional organ looping, and lateralized organ function. Left-right (LR) asymmetry is determined genetically by intricate molecular interactions that occur during development. Key genes have been elucidated in several species. There are common mechanisms in vertebrates and invertebrates, but some appear to exhibit unique mechanisms. This review focuses on LR asymmetry formation in invertebrates, particularly <i>Drosophila</i>, ascidians, and mollusks. It aims to understand the role of the genes that are key to creating LR asymmetry and how chirality information is converted/transmitted across the hierarchies from molecules to cells and from cells to tissues.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Organism as the Niche: Physiological States Crack the Code of Adult Neural Stem Cell Heterogeneity. 有机体是利基:生理状态破解了成人神经干细胞异质性的密码。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-09 DOI: 10.1146/annurev-cellbio-120320-040213
Zayna Chaker, Eleni Makarouni, Fiona Doetsch

Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.

神经干细胞(NSCs)在成年哺乳动物大脑中持续存在,并能在一生中产生新的神经元和胶质细胞。成年小鼠大脑中最大的干细胞龛是侧脑室内衬的脑室-室下区(V-SVZ)。V-SVZ中的成年非干细胞在静止和活跃增殖状态下共存,并表现出区域化的分子特征。这种空间多样性的重要性刚刚显现,因为根据其在生态位中的位置,成体 NSC 会产生不同亚型的嗅球中间神经元和不同类型的胶质细胞。然而,人们对V-SVZ干细胞异质性的功能相关性仍知之甚少。在这里,我们从研究结果的角度强调了成体NSC多样性对大脑可塑性的重要性,以及身体如何在不同生理状态下向大脑干细胞发出信号,以调节它们的行为。
{"title":"The Organism as the Niche: Physiological States Crack the Code of Adult Neural Stem Cell Heterogeneity.","authors":"Zayna Chaker, Eleni Makarouni, Fiona Doetsch","doi":"10.1146/annurev-cellbio-120320-040213","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120320-040213","url":null,"abstract":"<p><p>Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. 线粒体结构、动力学和生理学:用光学显微镜解构网络。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-08 DOI: 10.1146/annurev-cellbio-111822-114733
Juan C Landoni, Tatjana Kleele, Julius Winter, Willi Stepp, Suliana Manley

Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.

线粒体是细胞的能量和信号枢纽:这种功能是线粒体的结构、功能、动力学、相互作用和分子组织之间复杂相互作用的结果。观察和量化这些特性的能力往往是破译线粒体功能和功能障碍背后机制的关键谜题。荧光显微镜满足了这一关键需求,随着超分辨率方法和上下文敏感荧光探针的出现,荧光显微镜变得越来越强大。在这篇综述中,我们将深入探讨用于研究线粒体超微结构、动力学和生理学的先进光学显微镜方法和分析,并重点介绍它们带来的重大发现。
{"title":"Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network.","authors":"Juan C Landoni, Tatjana Kleele, Julius Winter, Willi Stepp, Suliana Manley","doi":"10.1146/annurev-cellbio-111822-114733","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-111822-114733","url":null,"abstract":"<p><p>Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organ Evolution: Emergence of Multicellular Function. 器官进化:多细胞功能的出现。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-03 DOI: 10.1146/annurev-cellbio-111822-121620
Joseph Parker

Instances of multicellularity across the tree of life have fostered the evolution of complex organs composed of distinct cell types that cooperate, producing emergent biological functions. How organs originate is a fundamental evolutionary problem that has eluded deep mechanistic and conceptual understanding. Here I propose a cell- to organ-level transitions framework, whereby cooperative division of labor originates and becomes entrenched between cell types through a process of functional niche creation, cell type subfunctionalization, and irreversible ratcheting of cell interdependencies. Comprehending this transition hinges on explaining how these processes unfold molecularly in evolving populations. Recent single-cell transcriptomic studies and analyses of terminal fate specification indicate that cellular functions are conferred by modular gene expression programs. These discrete components of functional variation may be deployed or combined within cells to introduce new properties into multicellular niches, or partitioned across cells to establish division of labor. Tracing gene expression program evolution at the level of single cells in populations may reveal transitions toward organ complexity.

生命树上的多细胞现象促进了由不同细胞类型组成的复杂器官的进化,这些器官相互合作,产生了新的生物功能。器官是如何起源的是一个基本的进化问题,一直没有得到深入的机制和概念上的理解。在这里,我提出了一个从细胞到器官的过渡框架,在这个框架中,细胞类型之间的合作分工是通过功能位点的创建、细胞类型的亚功能化以及细胞相互依赖关系的不可逆转的棘轮化过程而产生并稳固下来的。理解这一转变取决于解释这些过程如何在不断进化的群体中以分子方式展开。最近的单细胞转录组研究和末端命运规范分析表明,细胞功能是由模块化基因表达程序赋予的。这些功能变异的离散成分可能会在细胞内进行部署或组合,从而为多细胞龛引入新的特性,也可能会在细胞间进行分工。在群体中单细胞的水平上追踪基因表达程序的进化可能会揭示器官复杂性的转变。
{"title":"Organ Evolution: Emergence of Multicellular Function.","authors":"Joseph Parker","doi":"10.1146/annurev-cellbio-111822-121620","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-111822-121620","url":null,"abstract":"<p><p>Instances of multicellularity across the tree of life have fostered the evolution of complex organs composed of distinct cell types that cooperate, producing emergent biological functions. How organs originate is a fundamental evolutionary problem that has eluded deep mechanistic and conceptual understanding. Here I propose a cell- to organ-level transitions framework, whereby cooperative division of labor originates and becomes entrenched between cell types through a process of functional niche creation, cell type subfunctionalization, and irreversible ratcheting of cell interdependencies. Comprehending this transition hinges on explaining how these processes unfold molecularly in evolving populations. Recent single-cell transcriptomic studies and analyses of terminal fate specification indicate that cellular functions are conferred by modular gene expression programs. These discrete components of functional variation may be deployed or combined within cells to introduce new properties into multicellular niches, or partitioned across cells to establish division of labor. Tracing gene expression program evolution at the level of single cells in populations may reveal transitions toward organ complexity.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Thylakoid Structural Diversity. 类囊体结构多样性的进化。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-01 DOI: 10.1146/annurev-cellbio-120823-022747
Annemarie Perez-Boerema, Benjamin D Engel, Wojciech Wietrzynski

Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.

含氧光合作用在数十亿年前进化而来,成为地球上生物可用碳和大气氧气的主要来源。从那时起,光营养生物通过内共生事件,从原核蓝藻进化成多个不同的真核藻类和植物支系。这种多样性可以从类囊体膜上体现出来,类囊体膜是由脂质、蛋白质和色素组成的复杂网络,执行光合作用的光依赖反应。在这篇综述中,我们将根据光营养物种的进化历史,重点介绍硫球的结构多样性。我们首先对不同的类硫球成分进行分子盘点,然后说明这些构件是如何整合形成具有不同结构的膜网络的。最后,我们展望了在生物生成、修复和环境适应等动态过程中如何重塑其结构和分子组织。
{"title":"Evolution of Thylakoid Structural Diversity.","authors":"Annemarie Perez-Boerema, Benjamin D Engel, Wojciech Wietrzynski","doi":"10.1146/annurev-cellbio-120823-022747","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120823-022747","url":null,"abstract":"<p><p>Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microhomology-Mediated End Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. 微观同源性介导的末端连接编年史:追踪基因组保护的进化足迹。
IF 11.3 1区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-10 DOI: 10.1146/annurev-cellbio-111822-014426
Agnel Sfeir, Marcel Tijsterman, Mitch McVey

The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.

遗传信息的保真度对细胞的功能和活力至关重要。DNA 双链断裂(DSB)对基因组的完整性构成重大威胁,因此需要高效的修复机制。虽然主要的修复策略通常是准确的,但矛盾的是,也存在容易出错的途径。这篇综述探讨了微同源物介导的末端连接(MMEJ)的最新进展和我们对它的理解,MMEJ 是一种内在突变的 DSB 修复途径,在各种生物中都是一致的。MMEJ的核心是DNA聚合酶θ(Polθ)的活性,它是一种特殊的聚合酶,能激发MMEJ的致突变性。我们研究了 MMEJ 活性背后错综复杂的分子机制,并讨论了它在有丝分裂过程中的功能,在有丝分裂过程中,Polθ 的活性是解决持续性 DSB 的最后努力,尤其是在同源重组受到损害时。我们探讨了以 Polθ 为靶点在癌症治疗和基因组编辑中的应用前景。最后,我们讨论了 MMEJ 的进化后果,强调了它在保护基因组完整性和推动基因组多样性之间的微妙平衡。
{"title":"Microhomology-Mediated End Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection.","authors":"Agnel Sfeir, Marcel Tijsterman, Mitch McVey","doi":"10.1146/annurev-cellbio-111822-014426","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-111822-014426","url":null,"abstract":"<p><p>The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annual review of cell and developmental biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1