Real-Time Continuous Gait Phase and Speed Estimation from a Single Sensor.

David Quintero, Daniel J Lambert, Dario J Villarreal, Robert D Gregg
{"title":"Real-Time Continuous Gait Phase and Speed Estimation from a Single Sensor.","authors":"David Quintero,&nbsp;Daniel J Lambert,&nbsp;Dario J Villarreal,&nbsp;Robert D Gregg","doi":"10.1109/CCTA.2017.8062565","DOIUrl":null,"url":null,"abstract":"<p><p>Human gait involves a repetitive cycle of movements, and the phase of gait represents the location in this cycle. Gait phase is measured across many areas of study (e.g., for analyzing gait and controlling powered lower-limb prosthetic and orthotic devices). Current gait phase detection methods measure discrete gait events (e.g., heel strike, flat foot, toe off, etc.) by placing multiple sensors on the subject's lower-limbs. Using multiple sensors can create difficulty in experimental setup and real-time data processing. In addition, detecting only discrete events during the gait cycle limits the amount of information available during locomotion. In this paper we propose a real-time and continuous measurement of gait phase parameterized by a mechanical variable (i.e., phase variable) from a single sensor measuring the human thigh motion. Human subject experiments demonstrate the ability of the phase variable to accurately parameterize gait progression for different walking/running speeds (1 to 9 miles/hour). Our results show that this real-time method can also estimate gait speed from the same sensor.</p>","PeriodicalId":72705,"journal":{"name":"Control Technology and Applications. Control Technology and Applications","volume":"2017 ","pages":"847-852"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CCTA.2017.8062565","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Technology and Applications. Control Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2017.8062565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Human gait involves a repetitive cycle of movements, and the phase of gait represents the location in this cycle. Gait phase is measured across many areas of study (e.g., for analyzing gait and controlling powered lower-limb prosthetic and orthotic devices). Current gait phase detection methods measure discrete gait events (e.g., heel strike, flat foot, toe off, etc.) by placing multiple sensors on the subject's lower-limbs. Using multiple sensors can create difficulty in experimental setup and real-time data processing. In addition, detecting only discrete events during the gait cycle limits the amount of information available during locomotion. In this paper we propose a real-time and continuous measurement of gait phase parameterized by a mechanical variable (i.e., phase variable) from a single sensor measuring the human thigh motion. Human subject experiments demonstrate the ability of the phase variable to accurately parameterize gait progression for different walking/running speeds (1 to 9 miles/hour). Our results show that this real-time method can also estimate gait speed from the same sensor.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于单传感器的实时连续步态相位和速度估计。
人的步态是一个重复的运动循环,步态的相位表示在这个循环中的位置。步态阶段在许多研究领域被测量(例如,用于分析步态和控制动力下肢假肢和矫形装置)。当前的步态相位检测方法通过在受试者的下肢放置多个传感器来测量离散的步态事件(例如,脚跟撞击、扁平足、脚趾脱落等)。使用多个传感器会给实验设置和实时数据处理带来困难。此外,仅检测步态周期中的离散事件限制了运动过程中可用的信息量。在本文中,我们提出了一种实时连续测量步态相位的方法,该方法由一个机械变量(即相位变量)参数化,来自测量人体大腿运动的单个传感器。人体实验证明了相位变量能够准确地参数化不同步行/跑步速度(1至9英里/小时)的步态进展。实验结果表明,该方法可以实时估计出同一传感器的步态速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian Optimization for State and Parameter Estimation of Dynamic Networks with Binary Space. Toward Phase-Variable Control of Sit-to-Stand Motion with a Powered Knee-Ankle Prosthesis. Real-Time Continuous Gait Phase and Speed Estimation from a Single Sensor. Automatic Tuning of Virtual Constraint-Based Control Algorithms for Powered Knee-Ankle Prostheses. Removing Phase Variables from Biped Robot Parametric Gaits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1