Yu Li, Huien Li, Zhigang Wang, Danyang Gao, Kun Xiao, Aihua Yan
{"title":"Cloning, localization and bioinformatics analysis of a gene encoding an odorant-binding protein (OBP) in Anoplophora glabripennis (Motschulsky).","authors":"Yu Li, Huien Li, Zhigang Wang, Danyang Gao, Kun Xiao, Aihua Yan","doi":"10.1007/s10158-018-0215-5","DOIUrl":null,"url":null,"abstract":"<p><p>Anoplophora glabripennis (Motschulsky) has an advanced and complicated olfactory system to identify hosts, mates and spawning locations, and odorant-binding proteins (OBPs) play a key role by binding to volatile materials from different hosts. The full-length cDNA sequence of an OBP, AglaOBP, was cloned by RACE from an antenna cDNA library, and the protein structure and function were predicted by bioinformatics analysis. Gene temporal and spatial expression was detected by real-time qPCR. AglaOBP had distinctive sequence, location and expression profiles compared with other OBPs of A. glabripennis, as it was found in different tissues, and the highest expression was in the elytrums. The possible physiological functions of this OBP were discussed. These findings help elucidate the physiology of this pest and provide a new potential target for pest control.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 3","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0215-5","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-018-0215-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 2
Abstract
Anoplophora glabripennis (Motschulsky) has an advanced and complicated olfactory system to identify hosts, mates and spawning locations, and odorant-binding proteins (OBPs) play a key role by binding to volatile materials from different hosts. The full-length cDNA sequence of an OBP, AglaOBP, was cloned by RACE from an antenna cDNA library, and the protein structure and function were predicted by bioinformatics analysis. Gene temporal and spatial expression was detected by real-time qPCR. AglaOBP had distinctive sequence, location and expression profiles compared with other OBPs of A. glabripennis, as it was found in different tissues, and the highest expression was in the elytrums. The possible physiological functions of this OBP were discussed. These findings help elucidate the physiology of this pest and provide a new potential target for pest control.
期刊介绍:
Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include:
Functional analysis of the invertebrate nervous system;
Molecular neuropharmacology and toxicology;
Neurogenetics and genomics;
Functional anatomy;
Neurodevelopment;
Neuronal networks;
Molecular and cellular mechanisms of behavior and behavioural plasticity.