Big Data in traumatic brain injury; promise and challenges.

Q3 Medicine Concussion Pub Date : 2017-07-10 eCollection Date: 2017-12-01 DOI:10.2217/cnc-2016-0013
Denes V Agoston, Dianne Langford
{"title":"Big Data in traumatic brain injury; promise and challenges.","authors":"Denes V Agoston,&nbsp;Dianne Langford","doi":"10.2217/cnc-2016-0013","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a spectrum disease of overwhelming complexity, the research of which generates enormous amounts of structured, semi-structured and unstructured data. This resulting big data has tremendous potential to be mined for valuable information regarding the \"most complex disease of the most complex organ\". Big data analyses require specialized big data analytics applications, machine learning and artificial intelligence platforms to reveal associations, trends, correlations and patterns not otherwise realized by current analytical approaches. The intersection of potential data sources between experimental TBI and clinical TBI research presents inherent challenges for setting parameters for the generation of common data elements and to mine existing legacy data that would allow highly translatable big data analyses. In order to successfully utilize big data analyses in TBI, we must be willing to accept the messiness of data, collect and store all data and give up causation for correlation. In this context, coupling the big data approach to established clinical and pre-clinical data sources will transform current practices for triage, diagnosis, treatment and prognosis into highly integrated evidence-based patient care.</p>","PeriodicalId":37006,"journal":{"name":"Concussion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/cnc-2016-0013","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concussion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/cnc-2016-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 23

Abstract

Traumatic brain injury (TBI) is a spectrum disease of overwhelming complexity, the research of which generates enormous amounts of structured, semi-structured and unstructured data. This resulting big data has tremendous potential to be mined for valuable information regarding the "most complex disease of the most complex organ". Big data analyses require specialized big data analytics applications, machine learning and artificial intelligence platforms to reveal associations, trends, correlations and patterns not otherwise realized by current analytical approaches. The intersection of potential data sources between experimental TBI and clinical TBI research presents inherent challenges for setting parameters for the generation of common data elements and to mine existing legacy data that would allow highly translatable big data analyses. In order to successfully utilize big data analyses in TBI, we must be willing to accept the messiness of data, collect and store all data and give up causation for correlation. In this context, coupling the big data approach to established clinical and pre-clinical data sources will transform current practices for triage, diagnosis, treatment and prognosis into highly integrated evidence-based patient care.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外伤性脑损伤的大数据研究承诺与挑战。
创伤性脑损伤(TBI)是一种极其复杂的谱系疾病,其研究产生了大量的结构化、半结构化和非结构化数据。由此产生的大数据具有巨大的潜力,可用于挖掘有关“最复杂器官的最复杂疾病”的宝贵信息。大数据分析需要专门的大数据分析应用程序、机器学习和人工智能平台来揭示当前分析方法无法实现的关联、趋势、相关性和模式。实验TBI和临床TBI研究之间的潜在数据源的交集,为公共数据元素的生成设置参数和挖掘现有遗留数据提出了固有的挑战,这些数据将允许高度可翻译的大数据分析。为了在TBI中成功利用大数据分析,我们必须愿意接受数据的混乱,收集和存储所有数据,放弃因果关系,寻求相关性。在此背景下,将大数据方法与已建立的临床和临床前数据源相结合,将使目前的分诊、诊断、治疗和预后实践转变为高度整合的循证患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Concussion
Concussion Medicine-Neurology (clinical)
CiteScore
2.70
自引率
0.00%
发文量
2
审稿时长
12 weeks
期刊最新文献
Persistent post-concussion symptoms include neural auditory processing in young children. Initial investigation of kinesiophobia as a predictor of functional reaction time one year after concussion Awareness and understanding of concussion among Aboriginal Australians with high health literacy Dual statistical models link baseline visual attention measure to risk for significant symptomatic concussion in sports The National Football League and traumatic brain injury: blood-based evaluation at the game
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1