Yun-Sang Choi, Su-Kyung Ku, Tae-Kyung Kim, Jong-Dae Park, Young-Chan Kim, Hee-Ju Kim, Young-Boong Kim
{"title":"Distribution of Microorganisms in <i>Cheongyang</i> Red Pepper Sausage and Effect of Central Temperature on Quality Characteristics of Sausage.","authors":"Yun-Sang Choi, Su-Kyung Ku, Tae-Kyung Kim, Jong-Dae Park, Young-Chan Kim, Hee-Ju Kim, Young-Boong Kim","doi":"10.5851/kosfa.2018.e13","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to provide preliminary data for food industry by investigating the distribution of microorganisms in raw materials and sausage examining the effect of heating temperature on sausage quality. Total microbes in sausage ranged 2.21-3.11 Log CFU/g. <i>Bacillus pumilus, B. licheniformis, Staphylococcus saprophyticus</i>, and <i>Enterococcus faecalis</i> were detected on sausage. Total microbes in raw materials was 1.59-7.16 Log CFU/g. Different types of microorganisms were found depending on raw materials, with <i>B. pumilus</i> and <i>B. subtilis</i> were being detected in both raw materials and sausage. Total microbes in sausage after heating was in the range of 1.10-2.22 Log CFU/g, showing the trend of decrease in total microbe with increasing heating temperature, although the decrease was not significant. With increasing heating temperature, pH and hardness were also increased. The yield of sausage manufactured at 85°C was 95.42% while that manufactured at 65°C was 96.67%. Therefore, decreasing heating temperature during sausage production might increase yield and save energy without microbiological effect.</p>","PeriodicalId":17915,"journal":{"name":"Korean Journal for Food Science of Animal Resources","volume":"38 4","pages":"749-758"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bb/54/kosfa-38-4-749.PMC6131380.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal for Food Science of Animal Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5851/kosfa.2018.e13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
The objective of this study was to provide preliminary data for food industry by investigating the distribution of microorganisms in raw materials and sausage examining the effect of heating temperature on sausage quality. Total microbes in sausage ranged 2.21-3.11 Log CFU/g. Bacillus pumilus, B. licheniformis, Staphylococcus saprophyticus, and Enterococcus faecalis were detected on sausage. Total microbes in raw materials was 1.59-7.16 Log CFU/g. Different types of microorganisms were found depending on raw materials, with B. pumilus and B. subtilis were being detected in both raw materials and sausage. Total microbes in sausage after heating was in the range of 1.10-2.22 Log CFU/g, showing the trend of decrease in total microbe with increasing heating temperature, although the decrease was not significant. With increasing heating temperature, pH and hardness were also increased. The yield of sausage manufactured at 85°C was 95.42% while that manufactured at 65°C was 96.67%. Therefore, decreasing heating temperature during sausage production might increase yield and save energy without microbiological effect.