{"title":"Super-Resolution of Magnetic Resonance Images via Convex Optimization with Local and Global Prior Regularization and Spectrum Fitting.","authors":"Naoki Kawamura, Tatsuya Yokota, Hidekata Hontani","doi":"10.1155/2018/9262847","DOIUrl":null,"url":null,"abstract":"<p><p>Given a low-resolution image, there are many challenges to obtain a super-resolved, high-resolution image. Many of those approaches try to simultaneously upsample and deblur an image in signal domain. However, the nature of the super-resolution is to restore high-frequency components in frequency domain rather than upsampling in signal domain. In that sense, there is a close relationship between super-resolution of an image and extrapolation of the spectrum. In this study, we propose a novel framework for super-resolution, where the high-frequency components are theoretically restored with respect to the frequency fidelities. This framework helps to introduce multiple simultaneous regularizers in both signal and frequency domains. Furthermore, we propose a new super-resolution model where frequency fidelity, low-rank (LR) prior, low total variation (TV) prior, and boundary prior are considered at once. The proposed method is formulated as a convex optimization problem which can be solved by the alternating direction method of multipliers. The proposed method is the generalized form of the multiple super-resolution methods such as TV super-resolution, LR and TV super-resolution, and the Gerchberg method. Experimental results show the utility of the proposed method comparing with some existing methods using both simulational and practical images.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2018-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9262847","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/9262847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Given a low-resolution image, there are many challenges to obtain a super-resolved, high-resolution image. Many of those approaches try to simultaneously upsample and deblur an image in signal domain. However, the nature of the super-resolution is to restore high-frequency components in frequency domain rather than upsampling in signal domain. In that sense, there is a close relationship between super-resolution of an image and extrapolation of the spectrum. In this study, we propose a novel framework for super-resolution, where the high-frequency components are theoretically restored with respect to the frequency fidelities. This framework helps to introduce multiple simultaneous regularizers in both signal and frequency domains. Furthermore, we propose a new super-resolution model where frequency fidelity, low-rank (LR) prior, low total variation (TV) prior, and boundary prior are considered at once. The proposed method is formulated as a convex optimization problem which can be solved by the alternating direction method of multipliers. The proposed method is the generalized form of the multiple super-resolution methods such as TV super-resolution, LR and TV super-resolution, and the Gerchberg method. Experimental results show the utility of the proposed method comparing with some existing methods using both simulational and practical images.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics