{"title":"Covariance nuclear magnetic resonance methods for obtaining protein assignments and novel correlations","authors":"Aswani K. Kancherla, Dominique P. Frueh","doi":"10.1002/cmr.a.21437","DOIUrl":null,"url":null,"abstract":"<p>Protein nuclear magnetic resonance (NMR) assignment can be a tedious and error-prone process, and it is often a limiting factor in biomolecular NMR studies. Challenges are exacerbated in larger proteins, disordered proteins, and often alpha-helical proteins, owing to an increase in spectral complexity and frequency degeneracies. Here, several multidimensional spectra must be inspected and compared in an iterative manner before resonances can be assigned with confidence. Over the last 2 decades, covariance NMR has evolved to become applicable to protein multidimensional spectra. The method, previously used to generate new correlations from spectra of small organic molecules, can now be used to recast assignment procedures as mathematical operations on NMR spectra. These operations result in multidimensional correlation maps combining all information from input spectra and providing direct correlations between moieties that would otherwise be compared indirectly through reporter nuclei. Thus, resonances of sequential residues can be identified and side-chain signals can be assigned by visual inspection of 4D arrays. This review highlights advances in covariance NMR that permitted to generate reliable 4D arrays and describes how these arrays can be obtained from conventional NMR spectra.</p>","PeriodicalId":55216,"journal":{"name":"Concepts in Magnetic Resonance Part A","volume":"46A 2","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.a.21437","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part A","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.a.21437","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Protein nuclear magnetic resonance (NMR) assignment can be a tedious and error-prone process, and it is often a limiting factor in biomolecular NMR studies. Challenges are exacerbated in larger proteins, disordered proteins, and often alpha-helical proteins, owing to an increase in spectral complexity and frequency degeneracies. Here, several multidimensional spectra must be inspected and compared in an iterative manner before resonances can be assigned with confidence. Over the last 2 decades, covariance NMR has evolved to become applicable to protein multidimensional spectra. The method, previously used to generate new correlations from spectra of small organic molecules, can now be used to recast assignment procedures as mathematical operations on NMR spectra. These operations result in multidimensional correlation maps combining all information from input spectra and providing direct correlations between moieties that would otherwise be compared indirectly through reporter nuclei. Thus, resonances of sequential residues can be identified and side-chain signals can be assigned by visual inspection of 4D arrays. This review highlights advances in covariance NMR that permitted to generate reliable 4D arrays and describes how these arrays can be obtained from conventional NMR spectra.
期刊介绍:
Concepts in Magnetic Resonance Part A brings together clinicians, chemists, and physicists involved in the application of magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from academic, governmental, and clinical communities, to disseminate the latest important experimental results from medical, non-medical, and analytical magnetic resonance methods, as well as related computational and theoretical advances.
Subject areas include (but are by no means limited to):
-Fundamental advances in the understanding of magnetic resonance
-Experimental results from magnetic resonance imaging (including MRI and its specialized applications)
-Experimental results from magnetic resonance spectroscopy (including NMR, EPR, and their specialized applications)
-Computational and theoretical support and prediction for experimental results
-Focused reviews providing commentary and discussion on recent results and developments in topical areas of investigation
-Reviews of magnetic resonance approaches with a tutorial or educational approach