Enhanced sulfur resistance by constructing MnOx–Co3O4 interface on Ni foam in the removal of benzene†

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Science: Nano Pub Date : 2022-11-18 DOI:10.1039/D2EN00893A
Dawei Han, Menglan Xiao, Yuechang Wei, Xueqin Yang, Yucong Guo, Lingjuan Ma, Xiaolin Yu and Maofa Ge
{"title":"Enhanced sulfur resistance by constructing MnOx–Co3O4 interface on Ni foam in the removal of benzene†","authors":"Dawei Han, Menglan Xiao, Yuechang Wei, Xueqin Yang, Yucong Guo, Lingjuan Ma, Xiaolin Yu and Maofa Ge","doi":"10.1039/D2EN00893A","DOIUrl":null,"url":null,"abstract":"<p >The catalytic degradation of volatile organic compounds (VOCs) in the presence of SO<small><sub>2</sub></small> remains an urgent issue for industrial applications. Herein, we constructed an MnO<small><sub><em>x</em></sub></small>–Co<small><sub>3</sub></small>O<small><sub>4</sub></small> interface on Ni foam (Mn<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>–NF catalysts) to improve SO<small><sub>2</sub></small> resistance for benzene degradation. The surface decoration of MnO<small><sub><em>x</em></sub></small> on Mn<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>–NF catalysts could generate a Co–Mn interface to tune the redox ability and active oxygen species. The Mn<small><sub>1</sub></small>Co<small><sub>1</sub></small>–NF catalyst showed high Co<small><sup>3+</sup></small>/Co<small><sup>2+</sup></small> and Mn<small><sup>3+</sup></small>/Mn<small><sup>4+</sup></small> ratios as well as a high O<small><sub>latt</sub></small>/O<small><sub>ads</sub></small> ratio, which are conducive to excellent low-temperature reducibility. Benefiting from abundant interfacial active sites, the Mn<small><sub>1</sub></small>Co<small><sub>1</sub></small>–NF catalyst exhibited superior catalytic activity with <em>T</em><small><sub>50</sub></small> and <em>T</em><small><sub>90</sub></small> values of 259 and 290 °C and SO<small><sub>2</sub></small>-tolerance for benzene degradation. Results of <em>in situ</em> diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation revealed that surface metal sulfate species were preferentially formed on surface Mn sites rather than Co sites, thereby retarding the poisoning of Co–Mn interfacial active sites. Correspondingly, the ring-opening of benzoquinone into maleate species on the Mn<small><sub>1</sub></small>Co<small><sub>1</sub></small>–NF catalyst was only slightly inhibited by the introduction of SO<small><sub>2</sub></small>. This work provides a novel route to design SO<small><sub>2</sub></small>-resistant catalysts for VOC degradation in practical applications.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/en/d2en00893a","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

The catalytic degradation of volatile organic compounds (VOCs) in the presence of SO2 remains an urgent issue for industrial applications. Herein, we constructed an MnOx–Co3O4 interface on Ni foam (MnxCoy–NF catalysts) to improve SO2 resistance for benzene degradation. The surface decoration of MnOx on MnxCoy–NF catalysts could generate a Co–Mn interface to tune the redox ability and active oxygen species. The Mn1Co1–NF catalyst showed high Co3+/Co2+ and Mn3+/Mn4+ ratios as well as a high Olatt/Oads ratio, which are conducive to excellent low-temperature reducibility. Benefiting from abundant interfacial active sites, the Mn1Co1–NF catalyst exhibited superior catalytic activity with T50 and T90 values of 259 and 290 °C and SO2-tolerance for benzene degradation. Results of in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation revealed that surface metal sulfate species were preferentially formed on surface Mn sites rather than Co sites, thereby retarding the poisoning of Co–Mn interfacial active sites. Correspondingly, the ring-opening of benzoquinone into maleate species on the Mn1Co1–NF catalyst was only slightly inhibited by the introduction of SO2. This work provides a novel route to design SO2-resistant catalysts for VOC degradation in practical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在泡沫镍表面构建MnOx-Co3O4界面,提高了泡沫镍去除苯†的抗硫性能
在SO2存在下催化降解挥发性有机化合物(VOCs)仍然是工业应用中迫切需要解决的问题。在此,我们在Ni泡沫(MnxCoy-NF催化剂)上构建了MnOx-Co3O4界面,以提高苯降解的SO2抗性。MnOx在MnxCoy-NF催化剂上的表面修饰可以产生Co-Mn界面,从而调节氧化还原能力和活性氧种类。Mn1Co1-NF催化剂具有较高的Co3+/Co2+和Mn3+/Mn4+比值,以及较高的Olatt/Oads比,有利于优异的低温还原性。Mn1Co1-NF催化剂具有丰富的界面活性位点,其T50和T90分别为259°C和290°C,对苯的降解具有良好的催化活性。原位漫反射红外傅立叶变换光谱和密度泛函理论计算结果表明,表面金属硫酸盐物质优先在表面Mn位点而不是Co位点上形成,从而延缓了Co - Mn界面活性位点的中毒。相应的,在Mn1Co1-NF催化剂上,引入SO2只会轻微抑制苯醌开环成马来酸盐。本研究为设计抗so2降解VOC的催化剂提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
期刊最新文献
Correction: FeS colloids – formation and mobilization pathways in natural waters Morphological impact of 1-dimensional → 3-dimensional manganese dioxides on ozone catalytic decomposition correlated with crystal facet and lattice oxygen mobility A Review on the Role of Nanotechnological Interventions in Sequestration, Mitigation and Value-added Product Conversion of Micro/Nano Plastics Interfacial behavior of ceria grown on graphene oxide and its use for hydrolytic and photocatalytic decomposition of bisphenols A, S, and F 2D Mo2AlB2 transition-metal-aluminum-boride-phase-integrated TiO2 nanoparticles enable accelerated carbendazim photodegradation: impact of ohmic junctions and electric fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1