Augmenting beta regression for periodontal proportion data via the SAS NLMIXED procedure.

Q3 Mathematics Journal of Applied Probability and Statistics Pub Date : 2017-05-01
Bradley R Lewis, Dipankar Bandyopadhyay, Stacia M DeSantis, Mike T John
{"title":"Augmenting beta regression for periodontal proportion data via the SAS NLMIXED procedure.","authors":"Bradley R Lewis,&nbsp;Dipankar Bandyopadhyay,&nbsp;Stacia M DeSantis,&nbsp;Mike T John","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Often in clinical dental research, clinical attachment level (CAL) is recorded at several sites throughout the mouth to assess the extent of periodontal disease (PD). One might be interested to quantify PD at the tooth-level via the proportion of diseased sites per tooth type (say, incisors, canines, pre-molars and molars) per subject. However, these studies might consist of relatively disease-free and highly diseased subjects leading to the proportion responses distributed in the interval [0, 1]. While beta regression (BR) is often the model of choice to assess covariate effects for proportion data, the presence (and/or abundance) of zeros and/or ones makes it inapplicable here because the beta support is defined in the interval (0, 1). Avoiding ad hoc data transformation, we explore the potential of the augmented BR framework which augments the beta density with non-zero masses at zero and one while accounting for the clustering induced. Our classical estimation framework using maximum likelihood utilizes the potential of the SAS® Proc NLMIXED procedure. We explore our methodology via simulation studies and application to a real cross-sectional dataset on PD, and we assess the gain in model fit and parameter estimation over other ad hoc alternatives. This reveals newer insights into risk quantification on clustered proportion responses. Our methods can be implemented using standard SAS software routines. The augmented BR model results in a better fit to clustered periodontal proportion data over the standard beta model. We recommend using it as a parametric alternative for fitting proportion data, and avoid ad hoc data transformation.</p>","PeriodicalId":38394,"journal":{"name":"Journal of Applied Probability and Statistics","volume":"12 1","pages":"49-66"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191203/pdf/nihms882113.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Often in clinical dental research, clinical attachment level (CAL) is recorded at several sites throughout the mouth to assess the extent of periodontal disease (PD). One might be interested to quantify PD at the tooth-level via the proportion of diseased sites per tooth type (say, incisors, canines, pre-molars and molars) per subject. However, these studies might consist of relatively disease-free and highly diseased subjects leading to the proportion responses distributed in the interval [0, 1]. While beta regression (BR) is often the model of choice to assess covariate effects for proportion data, the presence (and/or abundance) of zeros and/or ones makes it inapplicable here because the beta support is defined in the interval (0, 1). Avoiding ad hoc data transformation, we explore the potential of the augmented BR framework which augments the beta density with non-zero masses at zero and one while accounting for the clustering induced. Our classical estimation framework using maximum likelihood utilizes the potential of the SAS® Proc NLMIXED procedure. We explore our methodology via simulation studies and application to a real cross-sectional dataset on PD, and we assess the gain in model fit and parameter estimation over other ad hoc alternatives. This reveals newer insights into risk quantification on clustered proportion responses. Our methods can be implemented using standard SAS software routines. The augmented BR model results in a better fit to clustered periodontal proportion data over the standard beta model. We recommend using it as a parametric alternative for fitting proportion data, and avoid ad hoc data transformation.

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过SAS nlmix程序对牙周比例数据进行增强β回归。
通常在临床牙科研究中,临床附着水平(CAL)被记录在整个口腔的几个位置,以评估牙周病(PD)的程度。人们可能有兴趣通过每个受试者的每种牙齿类型(例如,门齿,犬齿,前磨牙和磨牙)的病变部位的比例来量化牙齿水平的PD。然而,这些研究可能由相对无病和高度患病的受试者组成,导致比例反应分布在区间内[0,1]。虽然beta回归(BR)通常是评估比例数据协变量效应的首选模型,但0和/或1的存在(和/或丰富度)使得它在这里不适用,因为beta支持是在区间(0,1)中定义的。为了避免临时数据转换,我们探索了增强BR框架的潜力,该框架在0和1处增加了非零质量的beta密度,同时考虑了聚类诱导。我们使用最大似然的经典估计框架利用了SAS®Proc NLMIXED程序的潜力。我们通过模拟研究和应用于PD的真实横截面数据集来探索我们的方法,并评估了模型拟合和参数估计优于其他临时替代方案的增益。这揭示了对聚类比例反应的风险量化的新见解。我们的方法可以使用标准的SAS软件例程来实现。增强的BR模型比标准beta模型更适合聚类牙周比例数据。我们建议使用它作为拟合比例数据的参数替代,并避免临时数据转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Probability and Statistics
Journal of Applied Probability and Statistics Health Professions-Podiatry
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Augmenting beta regression for periodontal proportion data via the SAS NLMIXED procedure. Random Regression Models Based On The Skew Elliptically Contoured Distribution Assumptions With Applications To Longitudinal Data. Random Regression Models Based On The Skew Elliptically Contoured Distribution Assumptions With Applications To Longitudinal Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1