Keywan Mortezaee, Dheyauldeen Shabeeb, Ahmed E Musa, Masoud Najafi, Bagher Farhood
{"title":"Metformin as a Radiation Modifier; Implications to Normal Tissue Protection and Tumor Sensitization.","authors":"Keywan Mortezaee, Dheyauldeen Shabeeb, Ahmed E Musa, Masoud Najafi, Bagher Farhood","doi":"10.2174/1574884713666181025141559","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nowadays, ionizing radiation is used for several applications in medicine, industry, agriculture, and nuclear power generation. Besides the beneficial roles of ionizing radiation, there are some concerns about accidental exposure to radioactive sources. The threat posed by its use in terrorism is of global concern. Furthermore, there are several side effects to normal organs for patients who had undergone radiation treatment for cancer. Hence, the modulation of radiation response in normal tissues was one of the most important aims of radiobiology. Although, so far, several agents have been investigated for protection and mitigation of radiation injury. Agents such as amifostine may lead to severe toxicity, while others may interfere with radiation therapy outcomes as a result of tumor protection. Metformin is a natural agent that is well known as an antidiabetic drug. It has shown some antioxidant effects and enhances DNA repair capacity, thereby ameliorating cell death following exposure to radiation. Moreover, through targeting endogenous ROS production within cells, it can mitigate radiation injury. This could potentially make it an effective radiation countermeasure. In contrast to other radioprotectors, metformin has shown modulatory effects through induction of several genes such as AMPK, which suppresses reduction/ oxidation (redox) reactions, protects cells from accumulation of unrepaired DNA, and attenuates initiation of inflammation as well as fibrotic pathways. Interestingly, these properties of metformin can sensitize cancer cells to radiotherapy.</p><p><strong>Conclusion: </strong>In this article, we aimed to review the interesting properties of metformin such as radioprotection, radiomitigation and radiosensitization, which could make it an interesting adjuvant for clinical radiotherapy, as well as an interesting candidate for mitigation of radiation injury after a radiation disaster.</p>","PeriodicalId":10746,"journal":{"name":"Current clinical pharmacology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1574884713666181025141559","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current clinical pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574884713666181025141559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 58
Abstract
Background: Nowadays, ionizing radiation is used for several applications in medicine, industry, agriculture, and nuclear power generation. Besides the beneficial roles of ionizing radiation, there are some concerns about accidental exposure to radioactive sources. The threat posed by its use in terrorism is of global concern. Furthermore, there are several side effects to normal organs for patients who had undergone radiation treatment for cancer. Hence, the modulation of radiation response in normal tissues was one of the most important aims of radiobiology. Although, so far, several agents have been investigated for protection and mitigation of radiation injury. Agents such as amifostine may lead to severe toxicity, while others may interfere with radiation therapy outcomes as a result of tumor protection. Metformin is a natural agent that is well known as an antidiabetic drug. It has shown some antioxidant effects and enhances DNA repair capacity, thereby ameliorating cell death following exposure to radiation. Moreover, through targeting endogenous ROS production within cells, it can mitigate radiation injury. This could potentially make it an effective radiation countermeasure. In contrast to other radioprotectors, metformin has shown modulatory effects through induction of several genes such as AMPK, which suppresses reduction/ oxidation (redox) reactions, protects cells from accumulation of unrepaired DNA, and attenuates initiation of inflammation as well as fibrotic pathways. Interestingly, these properties of metformin can sensitize cancer cells to radiotherapy.
Conclusion: In this article, we aimed to review the interesting properties of metformin such as radioprotection, radiomitigation and radiosensitization, which could make it an interesting adjuvant for clinical radiotherapy, as well as an interesting candidate for mitigation of radiation injury after a radiation disaster.
期刊介绍:
Current Clinical Pharmacology publishes frontier reviews on all the latest advances in clinical pharmacology. The journal"s aim is to publish the highest quality review articles in the field. Topics covered include: pharmacokinetics; therapeutic trials; adverse drug reactions; drug interactions; drug metabolism; pharmacoepidemiology; and drug development. The journal is essential reading for all researchers in clinical pharmacology.